Public Water Supplies in Southern Texas

By W. L. BROADHURST, R. W. SUNDSTROM, and J. H. ROWLEY

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1070

Prepared by Water Resources Division, in cooperation with the Texas State Board of Water Engineers

this copy is PUBLIC PROPERTY and is not be removed from the official files. PRIVATE POSSESSION IS UNLAWFUL (R. S. Sup. Vol. 2. pp. 38

be removed from the official files. PRIVATE POSSESSION IS UNLAWFUL (R. S. Sup. Vol. 2, pp. Sec. 749)

UNITED STATES DEPARTMENT OF THE INTERIOR

Oscar L. Chapman, Secretary

GEOLOGICAL SURVEY

W. E. Wrather, Director

CONTENTS

Abstract
Introduction.
Extent of region and scope of report
Acknowledgments
Ground water
Area A
Area B
Area C.
Area D.
Surface water
Chemical character of water
Analyses of water
Mineral constituents in solution
Standards of water quality
Chemical character of ground-water supplies
Chemical character of surface-water supplies
Bibliography
Public water supplies.
Aransas County
Rockport
Atascosa County
Campbellton
Christine
Coughran
Jourdanton
North Pleasanton
Pleasanton
Poteet
Bandera County
Bandera
Bee County
Beeville
Pettus
Bexar County
Alamo Heights
San Antonio
Brooks County
Falfurrias
Caldwell County
Dale
Fentress
Lockhart
Luling

CONTENTS

Public water supplies—Continued	Page
Caldwell County—Continued	_
Lytton Springs	33
Martindale	34
Maxwell	34
McMahan	35
Uhland	35
Calhoun County	36
Port Lavaca	36
$\operatorname{Seadrift}_{}$	37
Cameron County	37
Brownsville	37
Combes	
Harlingen	
La Feria	39
Los Fresnos	
Port Isabel	40
Rio Hondo	40
San Benito	
Comal County	
New Braunfels	41
De Witt County	42
Cuero	
Nordheim	45
Yorktown	
Dimmit County	
Asherton	
Big Wells	47
Brundage	
Carrizo Springs	
Catarina	49
Duval County	50
Benavides	50
Freer	
San Diego	
Frio County	
Dilley	
Pearsall	
Goliad County	
Goliad	
Gonzales County	
Gonzales.	
Nixon	
Waelder	
Guadalupe County	
Marion	
Seguin	
Hays County	
Buda	
Kyle	60
San Marcos	61

Hidalgo County	
Alamo	
Donna	
Ed Couch	
Edinburg	- -
Elsa	
McAllen	
Mercedes	
Mission	
Pharr	
San Juan	
Weslaco	
Jim Hogg County	
Hebbronville	
Jim Wells County	
Alice	
Orange Grove	
Premont	
Karnes County	
Falls City	
Gillett	
Karnes City	
Kenedy	
· · · · · · · · · · · · · · · · · · ·	
Runge	
Kendall County	
Boerne	
Kinney County	
Brackettville	
Kleberg County	
Kingsville	
La Salle County	
Cotulla	
Fowlerton	
Live Oak County	
George West	
Three Rivers	
Maverick County	
Eagle Pass	
Medina County	
Devine	
Hondo	
Nueces County	
Agua Dulce	
Bishop	
Corpus Christi	
Port Aransas	
Robstown	
Refugio County	

VI CONTENTS

 ${\bf Public\ water\ supplies--Continued}$

San Patricio County	,
Aransas Pass	
Mathis	
Odem	
Starr County	
	y
Uvalde	
•	
and the second s	
	 ,
Zapata County	
Zavala County	
	ILLUSTRATION

Page

2

PLATE	1.	Map	showing	public	water	supplies	in sout	hern	Texas	and	areal
\mathbf{subd}	ivis	sions_									

PUBLIC WATER SUPPLIES IN SOUTHERN TEXAS

By W. L. Broadhurst, R. W. Sundstrom, and J. H. Rowley

ABSTRACT

This report gives a summarized description of the public water supplies in 42 counties of southern Texas, extending from the Rio Grande northward to the northern boundaries of Kinney, Uvalde, Bandera, Kendall, and Hays Counties and eastward to the eastern boundaries of Caldwell, Gonzales, DeWitt, Victoria, and Calhoun Counties. It gives the available data as follows for each of the 114 communities: Population of the community; name of the official from whom the information was obtained; ownership of water works, whether private or municipal; source of supply, whether ground or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment, if any; and chemical analyses of the water. Where ground water is used, the following information also is given: Records of wells, including drillers' logs; character of the pumping equipment; yield of the wells and records of water levels, where they are available.

The communities served by these public supplies had a population of 668,000 in 1940. Ground water is used by 79 of these communities and surface water by 31. The total amount of water consumed averages about 95 million gallons a day, of which about 55 million gallons is obtained from ground water and about 40 million gallons from surface water.

The extreme northern part of the region lies on the Edwards Plateau, and the remainder lies within the Gulf Coastal Plain. The rocks that crop out in the region are practically all sedimentary and consist chiefly of limestone, shale, clay, sandstone, sand, and gravel. They range in geologic age from Lower Cretaceous to Quaternary.

The general geologic structure of the region is comparatively simple. The most prominent features are the regional gulfward dip of the formations at an angle greater than the slope of the land surface, which is a significant factor governing the occurrence of artesian water, and faulting along the Balcones fault zone which controls the occurrence and movement of ground water in the Edwards and associated limestones.

Among the most important aquifers are the Edwards limestone of Lower Cretaceous age; the Carrizo sand, sands of the Mount Selman formation, the Oakville sandstone, and the Goliad sand of Tertiary age; and the Lissie formation and sands of the Beaumont clay of Quaternary age. Each of these units has outcrop areas from which the beds dip beneath younger formations to increasingly greater depths.

For convenience in summarizing the sources of municipal water supplies, the region has been divided into four areas, as shown on plate 1. In area A, Bandera obtains its water from sands in the Trinity group; Divine in southeastern Medina

County obtains water from sands in the Wilcox group or the Carrizo sand; and Boerne in southern Kendall County obtains its supply from Recent alluvium. The remainder of the municipalities in the area obtain water from the Edwards limestone, which has the greatest perennial yield of any aquifer in Texas. In area B, the Carrizo sand is the important aquifer in most of the area, although in the northeastern part several towns that are above the outcrop of the Carrizo sand obtain water from sands in the Wilcox group. In area C, all of the cities and towns use surface water with the exception of Falls City, Gonzales, and Three Rivers. In area D, which is adjacent to the Gulf Coast, the principal sources of ground water are the Catahoula tuff, the Oakville sandstone, sands of the Lagarto clay, the Goliad sand, the Lissie formation, and sands of the Beaumont clay.

Most of the public supplies obtained from surface water in Southern Texas are filtered and frequently are given further treatment that alters the chemical character of the water. All except two of the supplies from the Rio Grande are given some chemical treatment and about two-thirds of them are filtered. the 182 analyses given in this report, 138 are from wells or springs. the supplies from wells conform to the accepted standards of water quality. dissolved solids about one-fourth of the waters have less than 500 parts per million; about three-eights have between 500 and 1,000 parts per million; and the remainder have more than 1,000 parts per million. Less than half of the supplies have chlorides of more than 250 parts per million, and few have sulfates of more than 250 parts per million. About one-third of the waters is in the soft to moderately soft range of hardness; about one-third is in the moderately hard to hard range and one-third is in the very hard range. The chemical composition of the surface water varies through a rather wide range. At Rio Grande City, samples collected from the Rio Grande between 1935 and 1942 show dissolved solids ranging from 225 to 1,760 parts per million. At Three Rivers, samples collected from the Nueces River from 1941 to 1945 show dissolved solids ranging from 195 to 1,068 parts per million. At Spring Branch on the Guadalupe River, samples collected in 1942 show dissolved solids ranging from 150 to 540 parts per million; samples collected at Goliad from the San Antonio River in 1942 show dissolved solids ranging from 110 to 750 parts per million.

INTRODUCTION

EXTENT OF REGION AND SCOPE OF REPORT

This is the second of a series of reports giving summary descriptions of the public water supplies in Texas. The first, a mimeographed report covering 77 counties in eastern Texas, was released by the Texas State Board of Water Engineers in February 1945.

The region covered by the present report includes the 42 counties that extend from the Rio Grande northward and northeastward to the northern boundaries of Kinney, Uvalde, Bandera, Kendall, and Hays Counties and the northeastern boundaries of Caldwell, Gonzales, DeWitt, Victoria, and Calhoun Counties (See pl. 1). It comprises 43,897 square miles and in 1940 had a population of 1,147,340.

The 114 cities and towns in this region that have public water-

¹ Published also by Geological Survey as Sundstrom, R. W., Hastings, W. W., Broadhurst, W. L., Public Water supplies in eastern Texas: U. S. Geol. Survey Water-Supply Paper 1047, 1948.

supply systems had a population of 668,000 in 1940. They use on the average about 95,000,000 gallons of water a day, of which about 55,000,000 gallons is ground water and about 40,000,000 gallons is surface water. Ground water is used by 83 of the communities and surface water by 30; one town, Fentress, in Caldwell County has a supply utilizing both ground and surface water.

The need for certain basic data in the studies of quantitative and qualitative problems of public water supplies has long been apparent. This is especially true in Texas where, in recent years, there has been an enormous increase in the demand for water for public and industrial uses. The phenomenal growth of many Texas cities has resulted in the need from time to time for expanding or rebuilding the waterworks systems. Most of the communities throughout the State originally used ground water, and most of them still do. Some still use the original source of supply, some have developed additional sources of ground water, and others have changed from inadequate supplies of ground water to surface water.

The available information for each community is given in condensed form as follows: Population in 1940; name of official from whom the information was obtained; ownership of waterworks, whether private or municipal; source of supply, whether ground water or surface water; the amount of water consumed; the facilities for storage; the number of consumers served: the character of the chemical and sanitary treatment of the water; and chemical analyses of the water. Where ground water is used the following is also given: Records of wells, including depth, diameter, and drillers' logs; character of pumping equipment; yield of the wells; records of water levels, if available; and temperature of the water. Unfortunately many communities have kept poor records, or no records at all, of the amount of ground water pumped and the resulting decline of water level or artesian pressure in the wells since they were drilled, and for such localities the information given is necessarily incomplete. The availability of this information is vitally important, particularly in areas where the withdrawals from underground supplies are approaching the limits of safety or where large increases in withdrawals are anticipated.

ACKNOWLEDGMENTS

Grateful acknowledgment is made to the well drillers, city officials, and others who furnished most of the descriptive material that is given for each public supply. The investigation was made possible through the cooperation of the Geological Survey, United States Department of the Interior, and the Texas State Board of Water Engineers. The greater part of the field work was done and most of this report was prepared by W. L. Broadhurst and R. W. Sundstrom of the

Geological Survey, under the direction of W. N. White, district engineer in charge of the ground-water investigations in Texas. Most of the analyses of water were made in the laboratory of the Geological Survey at Austin, and the section on chemical character of water was prepared by J. H. Rowley under the direction of W. W. Hastings, district chemist in charge of the laboratory.

GROUND WATER

The scope of this report does not permit a discussion of the more complex details of the occurrence of ground water in each locality, and the following statements are brief and general. In several parts of the region, however, detailed studies of the geology and ground-water resources have been made and reports covering them have been issued. The reader is referred to the bibliography on pages 15 and 16 for a list of the reports.

The extreme northern part of the region lies on the Edwards Plateau, and the remainder lies within the Gulf Coastal Plain. The rocks that crop out in the region are mostly sedimentary and consist chiefly of limestones, shales, clays, sandstones, sands, and gravels. They range in geologic age from Lower Cretaceous to Quaternary. Igneous rocks are exposed in a few localities along the Balcones fault zone, which extends from Uvalde County eastward and northeastward through Medina, Bexar, Comal, and Hays Counties, but these rocks are not known to yield water.

The general geologic structure of the region is comparatively simple. The most prominent features are the regional gulfward dip of the formations at an angle greater than the slope of the land surface, which is a significant factor governing the occurrence of artesian water, and the faulting along the Balcones fault zone, which controls the occurrence and movement of ground water in the Edwards and associated limestones.

Among the most important aquifers are the Edwards limestone of Lower Cretaceous age; the Carrizo sand, sands of the Mount Selman formation, the Oakville sandstone, and the Goliad sand, of Tertiary age; and the Lissie formation and sands of the Beaumont clay, of Quaternary age. Each of these units has outcrop areas from which the beds dip beneath younger formations to increasingly greater depths.

In general, each water-bearing formation is underlain and overlain by relatively impermeable clays or shales that serve effectively as confining beds. Hence, the fresh water that occurs in each waterbearing formation is derived mostly from precipitation or seepage from streams on the outcrop areas of that particular formation. In

the outcrop areas of water-bearing formations the water occurs under water-table conditions; that is, the water will not rise in wells above the level at which it is encountered by the drill. The water moves slowly from the outcrop down the dip between impermeable beds, where it is confined under artesian conditions, which will cause it to rise in wells above the level at which it is encountered. The water may or may not rise to the surface and overflow, depending on the hydrostatic pressure in the aguifer and the altitude of the land surface at the well site.

For convenience in summarizing the sources of the municipal water supplies, the region has been divided into four areas: A, B, C, and D on the map. (See pl. 1.)

Area A.—This area consists of a narrow belt extending from the Rio Grande northeastward across the Edwards Plateau along and adjacent to the Balcones fault zone. With the exception of Eagle Pass in Maverick County, which obtains water from the Rio Grande, all cities and towns in the area use ground water.

Sands in the Trinity group, the basal unit of the Lower Cretaceous series, crop out in the Edwards Plateau along the northern boundary of the area and dip southeastward. Bandera in east-central Bandera County is the only town in the area that obtains water from these Devine in southeastern Medina County obtains water from sands in the Wilcox group or the Carrizo sand, and Boerne in southern Kendall County obtains its supply from Recent alluvium. The remaining municipalities in the area obtain water from the Edwards limestone, which has the greatest perennial yield of any aquifer in The large springs at San Marcos, New Braunfels, San Antonio, and other places along the Balcones fault zone, which are among the largest in the Southwest, issue from solution channels in the Edwards limestone. At San Antonio and vicinity artesian wells in the Edwards limestone supply more than 100 million gallons a day for municipal, industrial, military, and agricultural purposes.

Listed below are the municipalities in Area A whose public supplies are obtained from ground-water sources and also the probable water-bearing formation or group of formations from which the water is drawn.

Municipalities in Area A and probable water-bearing formation from which water is drawn

Alamo Heights Edwards limestone. Bandera..... Trinity group. Boerne Recent alluvium. Brackettville Edwards limestone. Buda_____ · Do.

Devine Carrizo sand or Wilcox group.

Municipalities in Area A and probable water-bearing formation from which water is drawn—Continued

Hondo	Edwards limestone.
Kyle	Do.
New Braunfels	
Sabinal	Do.
San Antonio	Do.
San Marcos	Do.
Uvalde	Do.

Area B.—This area joins Area A on the southeast. The Carrizo sand is generally the principal aquifer, although in the northeastern part of the area several towns that are northwest of the outcrop of the Carrizo sand obtain water from sands in the Wilcox group. The Carrizo sand crops out in a narrow belt that extends from the Rio Grande north and northeastward across Dimmit, Zavala, Frio, Atascosa, Wilson, Guadalupe, and Caldwell Counties. The sand dips southeastward toward the Gulf, and in LaSalle County it yields water suitable for municipal use at a depth of more than 2,500 feet, whereas in Gonzales County it yields rather highly mineralized water at a depth of 1,650 feet. A few towns in the area obtain water from the Mount Selman formation and a few rely on shallow wells in Pliocene or Pleistocene terrace deposits. Three towns, Campbellton, Fentress, and Seguin, use surface water.

Listed below are the municipalities in Area B whose public supplies are obtained from ground-water sources, and also the probable water-bearing formation or group of formations from which the water is drawn.

Municipalities using ground water, and probable water-bearing formations

Asherton	Carrizo sand.
Big Wells	Do.
Brundage	Do.
Carrizo Springs	Do.
Catarina	Do.
Christine	Mount Selman formation.
Cotulla	Carrizo sand.
Coughran	Mount Selman formation.
Crystal City	Carrizo sand.
Dale	Wilcox group.
Dilley	Carrizo sand.
Floresville	Do.
Fowlerton	Mount Selman formation.
Jourdanton	Carrizo sand
La Pryor	
	Pliocene or Pleistocene terrace deposits.
Luling	Wilcox group.
Lytton Springs	
McMahan	Do.

Municipalities using ground water, and probable water-bearing formations-Con.

	Marion	Austin chalk.
	Martindale	Pliocene or Pleistocene terrace deposits.
	Maxwell	Do.
_	Nixon	Carrizo sand.
•	North Pleasanton	Do.
	Pearsall	Do.
	Pleasanton	Mount Selman formation.
	Poteet	Carrizo sand.
	Poth	Do.
	Saspamco	Wilcox group.
	Stockdale	Queen City sand member of the Mount
		Selman formation.
	Uhland	

Area C.—This area is L shaped, extending through the central part of the region and southeastward along the Rio Grande from Laredo to the Gulf. All cities and towns in the area use surface water, and with the exception of Falls City, Gonzales, and Three Rivers they all obtain water from the Rio Grande.

Area D.—In Area D, which is adjacent to the gulf coast, the principal sources of ground water are the Catahoula tuff, the Oakville sandstone, sands in the Lagarto clay, the Goliad sand, the Lissie formation, and sands of the Beaumont clay. With the exception of Corpus Christi, Raymondville, and Robstown, all communities in this area use ground water, most of which is obtained from the abovenamed sands.

Listed below are the cities and towns in Area D whose public supplies are obtained from ground-water sources and also the probable water-bearing formation or group of formations from which the water is drawn.

Municipalities using ground water, and probable water-bearing formation

Agua Dulce	Goliad sand.
Aransas Pass	Beach deposits or sands in Beaumont
	clay.
Austwell	Sands in Beaumont clay.
Beeville	
Benevedas	Goliad sand.
Bishop	Goliad sand or Lissie formation.
Combes	Recent alluvium.
Combes Recent alluvium. Cuero Catahoula tuff and Oakville sandstone. Calfurrias Goliad sand.	
Falfurrias	Goliad sand.
Freer	Catahoula tuff.
George West	Catahoula tuff or Oakville sandstone.
Gillett	Yegua formation.
Goliad	Sands in Lagarto clay or Goliad sand.
Hebbronville	Catahoula tuff or Oakville sandstone.
Karnes City	Catahoula tuff.

Municipalities using ground water, and probable water-bearing formation—Con.

Kenedy	Oakville sandstone.
Kingsville	Goliad sand or Lissie formation.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lyford	Goliad sand or Lissie formation.
Mathis	Goliad sand.
Nordheim	Catahoula tuff or Oakville sandstone.
Odem	Sands in Beaumont clay.
Orange Grove	Goliad sand.
Pettus	Oakville sandstone or sands in Lagarto
T	clay.
Port Aransas	
Port Lavaca	Lissie formation or sands in Beaumont
	clay.
Premont	Goliad sand.
Refugio	Do.
Rockport	Beach deposits or sands in Beaumont clay.
Runge	
San Diego	
	Beach deposits or sands in Beaumont clay.
Sinton	Goliad sand and Lissie formation.
Woodsboro	Lissie formation.
Yorktown	Catahoula tuff or Oakville sandstone.

### SURFACE WATER

In the region covered by this report surface water is used by 31 communities including one town, Fentress, in Caldwell County, where a well also is used. Of the 31 communities 24 are in Area C where little or no ground water suitable for public supply is available. The average total consumption of surface water for municipal use in the region is about 40,000,000 gallons a day.

In Area A the public supply of Eagle Pass is obtained from the Rio Grande, and the requirement for the city averages about 900,000 gallons a day.

In Area B water for Campbellton in Atascosa County is obtained from the Atascosa River; a part of the supply for Fentress in Caldwell County is obtained from the San Marcos River; and at Seguin in Guadalupe County the supply is obtained from the Guadalupe River. The requirements for Seguin are by far the largest and average about 1,000,000 gallons a day.

In Area C, 24 of the municipalities use an average of about 19,000,000 gallons a day from the Rio Grande. The requirements for Laredo, which is about 7,000,000 gallons a day, is by far the largest in this area. Small quantities of water are pumped from the San Antonio River for a part of the public supply of Falls City. Gon ales uses

about 350,000 gallons a day from the Guadalupe River; and Three Rivers uses about 100,000 gallons a day from the Frio River.

In Area D Raymondville uses about 500,000 gallons a day from the Rio Grande. Corpus Christi uses about 16,000,000 gallons a day and Robstown about 640,000 gallons a day from the Nueces River.

### CHEMICAL CHARACTER OF WATER

### ANALYSES OF WATER

The analyses in this report deal with the dissolved mineral constituents in water and have no bearing on the sanitary fitness of the water. Of the 182 analyses listed, 10 were made by the Texas State Department of Health and 172 were made by the Geological Survey.

As the chemical quality of water from an individual well seldom shows any appreciable variation, except in very shallow wells or wells in aquifers subject to salt-water encroachment, a single analysis of water from a well is generally representative of the character of the water over long periods. For supplies that are treated or are obtained from streams, periodic analyses are needed to determine the range in the chemical character of the water. Water from most rivers shows a wide range in dissolved minerals and hardness during the year.

About a third of the public supplies from wells listed in this report receive treatment. All except two of the supplies from streams are given some chemical treatment and about two-thirds of them are filtered. The processes used for each supply are listed in the report in the order of their use.

The analyses were made by methods in general use.² They include results for silica (SiO₂), iron (Fe), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K) (or sodium and potassium as sodium), bicarbonate (HCO₃), sulfate (SO₄), chloride (Cl), fluoride (F), nitrate (NO₃), dissolved solids, total hardness as CaCO₃, and hydrogen-ion concentration (pH). The mineral constituents are reported in parts per million and in equivalents per million for those radicals that enter into ionic balance.

### MINERAL CONSTITUENTS IN SOLUTION

Rain and snow are almost free from mineral constituents, but when the water reaches the earth it begins to dissolve the minerals in the rocks and soils over which it flows or through which it percolates. The amount and type of minerals that are dissolved depend on the solubility and type of rocks and soils present and the length of time

² Collins, W. D., Notes on practical water analysis: U. S. Geol. Survey Water-Supply Paper 596-H 1928; Am. Public Health Assoc.; Standard Methods for the Examination of Water and Sewage, 7th ed., 1932.

the water is in contact with those materials. The constituents given in the analyses in this report are discussed in the following paragraphs.

Silica (SiO₂) is found in all natural waters and is usually present in greater quantities in ground waters than in surface waters. The presence of silica in water does not affect its usefulness except when the water is used for boilers. It contributes to the formation of boiler scale, either directly as a silica scale that causes local overheating or by cementing the other minerals together into a hard, troublesome scale that causes loss in heat transfer.

Iron (Fe) is dissolved from practically all rocks. It is often dissolved from pipes, hot-water lines, and boilers in quantities large enough to be objectionable. Waters low in dissolved mineral matter and waters of low pH tend to be relatively corrosive. Even a small amount of iron in water is undesirable because the iron precipitates on exposure to air, causing "red water" and resulting in stains on enameled or porcelain ware and fixtures and on clothing and other fabrics washed in the water. Iron is easily removed from many waters by aeration and filtration.

Calcium (Ca) and magnesium (Mg) are found in waters that have come in contact with limestone, dolomite, calcareous sand, and gypsum. They are also the chief basic constituents in many soft waters. Magnesium is found in considerable quantities when the waters are contaminated with sea water or have come in contact with deposits of sea salts. The scale found in containers where water is heated or evaporated is almost entirely caused by the presence of calcium and magnesium.

Sodium (Na) and potassium (K) are found in all natural waters; the quantity of potassium generally is comparatively small. Sodium is the chief basic constituent in sea water and most brines. In semi-arid regions, large quantities of sodium salts may be dissolved from soils and alkali deposits. Sodium sulfate may be present in large quantities in streams that receive drainage from irrigated land. Moderate quantities of sodium and potassium have no effect on the suitability of the water either for domestic or for most industrial uses. Higher quantities may cause trouble in operation of high-pressure steam boilers.

Carbonate (CO₃) and bicarbonate (HCO₃) in water are present mainly as a result of the action of carbon dioxide in solution on carbonates in soils and rocks. Carbonate is not generally found in natural waters. Bicarbonate has little effect on the suitability of water for municipal supplies, except that when present in very large amounts it affects the potability of the water.

Sulfate  $(SO_4)$  may be dissolved in large quantities from gypsum or from deposits of sodium sulfate. Sulfate is also found in considerable

quantities in water from mines and beds of shale as a result of the oxidation of sulfides of iron. The content of sulfate is increased by the use of alum as a coagulent in the treatment of the water. High sulfate in waters in combination with high calcium and magnesium causes the formation of hard scale in steam boilers; this combination increases the cost of softening the water.

Chloride (Cl) in large amounts, in combination with sodium, causes a salty taste, making the water undesirable for drinking. Appreciable quantities of chloride in equilibrium with calcium and magnesium may increase the corrosiveness of water. In some Texas waters sodium chloride is the main chemical constituent and occurs in such concentrations as to cause the water to be unsatisfactory for some industrial uses.

Nitrate (NO₃) is considered to be the final oxidation product of nitrogenous organic material. Some nitrate may be dissolved from rocks and soils but very few rocks contain appreciable amounts of nitrate salts. Nitrate has no effect on the value of water for ordinary purposes. It may serve as an indicator of contamination by sewage or other organic material.

Fluoride (F) is reported to occur in the rocks of the earth's crust in about half the amount reported for chloride. However, the amount of fluoride in natural water is much less than the amount of chloride. The relation of the occurrence of fluoride in water to mottled enamel of teeth has been recognized for some time.³ Mottled enamel has been found to be associated with the use, by children less than 8 years of age, of drinking water having a fluoride content of 1.0 part per million or more.⁴ Additional studies ⁵ have indicated that the occurrence of dental caries (decay) has been decreased by the use of drinking water containing measurable amounts of fluoride, though not so much as 1.0 part per million.

The figure for dissolved solids represents the total of the dissolved mineral constituents in the water, including any organic matter and water of crystallization. The palatability of water is affected by the amount of dissolved solids. Most waters with more than 1,000 parts per million of total solids are undesirable for municipal supply.

The hydrogen-ion concentration (pH) of a water indicates its degree of acidity or alkalinity, a factor which determines the corrosiveness of the water. Dissolved oxygen, carbon dioxide, free acid, and acid-

³ Smith, H. V., and Smith, M. C., Mottled enamel in Arizona and its correlation with concentration of fluorides in water supplies: Ariz. Univ. Coll. er. Bull., 43, p. 284, 1932.

⁴ Dean, H. Trendley, Chronic endemic dental fluorosis: Amer. Med. Assoc. Jour. vol. 107, pp. 1269-1272, 1936.

⁵ Dean, H. T., Jac. P., Arnold, F. A., Jr., and Elvove, E., Domestic water and dental caries: Public Health Rept., vol. 56, pp. 365-381, 761-792, 1941.

generating salts are the main constituents that cause corrosion; alkalinity is a factor that decreases corrosion. Water for public use should not be corrosive because it will attack and destroy metal surfaces, resulting in an increase in the iron content of the water and damage to the pipes used in the distribution system. Proper control of the pH by treatment will prevent corrosion.

Hardness is probably the most important factor to be considered in deciding on the suitability of a water supply for industrial or domestic Hardness is due almost entirely to the calcium and magnesium present in the water. It is commonly known that limestone waters are hard, whereas sandstone waters are soft. The two types of hardness are carbonate and noncarbonate. Carbonate hardness is that caused by calcium and magnesium equivalent to the bicarbonate contained in the water, and the noncarbonate hardness is the remainder of the hardness. These two terms are approximately equivalent to the old terms "temporary hardness" and "permanent hardness," respectively. The scale caused by the carbonate hardness may be porous and easily removed, but the scale due to noncarbonate hardness is hard and very difficult to remove. Hardness is recognized by the layman in terms of the amount of soap required to make a good lather and by the deposits of insoluble material formed when water is heated or evaporated. The treatment necessary to soften water depends on the kind and amount of hardness. The following degrees of hardness of water are referred to in this report: With hardness of 50 parts per million or less the waters are considered soft; with 50 to 100 parts per million, moderately soft; with 100 to 150 parts per million, moderately hard; with 150 to 250 parts per million, hard; and above 250 parts per million, very hard.

### STANDARDS OF WATER QUALITY

The effect of various constituents in water that is used for public supply and for industrial purposes, with reference to Texas well waters, is discussed by Cohen in an early bulletin by the Texas State Department of Health.⁶ The standards most widely used at present for judging the quality of domestic water supplies are those of the United States Public Health Service for the drinking and culinary water supply used by common carriers in interstate commerce.⁷

⁶ Cohen, Chester A., Chemical analyses of Texas well waters: Texas State Dept. of Health Bull., 1931.

⁷ Public Health Service drinking water standards: Public Health Reports, vol. 61, pp. 371-384, 1946.

# CHEMICAL CHARACTER OF GROUND-WATER SUPPLIES

Of the 182 analyses given in this report 138 are for public supplies obtained from wells or springs. In general, these supplies conform to the accepted standards of water quality. Of dissolved solids about one-fourth of the waters have less than 500 parts per million, about three-eighths have between 500 and 1,000 parts per million, and the remainder have more than 1,000 parts per million. Less than half the supplies have chloride contents of more than 250 parts per million, and only a very few have sulfate contents of more than 250 parts per million.

With regard to hardness about one-third of the waters are soft to moderately soft, about one-third are moderately hard to hard, and about one-third are very hard.

All the cities and towns in this region that are served with ground water are in areas A, B, and D. (See map, pl. 1.) In area A the ground-water supplies are generally very hard, but most of them have less than 500 parts per million of dissolved solids. In area B the dissolved solids are usually above 500 parts per million but seldom exceed 1,000 parts per million, and some of the supplies are soft although about half are considered hard. In area D many of the ground-water supplies have dissolved solids above 1,000 parts per million; these are generally hard.

# CHEMICAL CHARACTER OF SURFACE-WATER SUPPLIES

The mineral content and hardness of some surface waters vary widely from time to time, the concentration usually decreasing during periods of high flow and increasing during periods of low flow. Therefore, the analysis of a single sample from a surface source may be entirely inadequate as an index of the suitability of the water for public supply. A daily sampling program continued for years may be necessary in order to determine the extremes and average in mineral content.

In the region covered by this report, 23 public supplies are obtained from the Rio Grande, 2 from the Nueces River, 2 from the Guadalupe River, and 1 each from the Atascosa, Frio, San Antonio, and San Marcos Rivers.

Considerable information is available concerning the quality of the water in the Rio Grande, Nueces, San Antonio, and Guadalupe Rivers. The average composition together with the maximum and minimum

concentrations shown by the available records are given in the table below.

Average and extremes in composition of the water of the Rio Grande, Nueces, San Antonio, and Guadalupe Rivers

	Specific conduc- tance (K×10 ⁵ at 25° C.	Calcium (Ca)	Magne- sium (Mg)	Sodium and po- tassium (Na+K)	Bicar- bonate (HCO ₃ )	Sulfate (SO ₄ )	Chlo- ride (Cl)	Dis- solved solids	Total hardness as CaCO
		Rio G	rande at R	io Grande	City, 1935	-42 1			·
Average Minimum Maximum	101 50 282	80 39 179	19 12 63	101 37 344	142 115 154	195 73 580	126 35 514	591 255 1, 760	280 147 705
		Nuec	es River a	Three Riv	vers, 1941-	45 ²			
Average Minimum Maximum	95. 9 27. 2 183	58 38 115	11 3.5 25	120 18 248	205 138 380	80 17 205	142 12 287	512 195 1,068	190 109 390
		Guad	alupe Rive	r at Spring	Branch, 1	942 2	<u></u>	<u></u>	<u> </u>
Average Minimum Maximum	50. 5 23. 9 88. 1	62	22	16	272 302	21 86	21 6.0 86	290 150 540	245 352
		San	Antonio l	River at G	oliad, 1942	2	7, 2,00		
Average Minimum Maximum	75. 1 17. 4 121	89	16	40	276	67	54 9.0 192	473 110 750	288

¹ Analyzed by International Boundary Commission. ² Analyzed by U. S. Geological Survey.

A study of the records compiled by the International Boundary Commission indicates that there is little change in the composition of water in the Rio Grande between Rio Grande City and Brownsville. Therefore, the data available for the Rio Grande at Rio Grande City are probably representative of the composition of the water served to all users in the lower valley. The analyses of samples collected in 1946, during the preparation of this report, from public supplies served by the Rio Grande, are on the whole very close to the average analysis given in the table. Three supplies show a slightly higher concentration than the average, but only one, the Laredo supply, approaches the maximum concentration shown at Rio Grande City between 1935 and 1942.

The analyses of single samples collected in 1946 from public supplies from the Nueces River show a lower concentration than was recorded at Three Rivers during the period 1941-45.

The public supplies of Gonzales County and Seguin in Guadalupe County are obtained from the Guadalupe River. The analysis of a single sample at Gonzales shows a concentration that is twice the

average for the river at Spring Branch, whereas the analysis for Seguin shows a concentration that is slightly below the average at Spring Branch.

The analysis of the sample obtained from the San Antonio River at Falls City, Karnes County, shows about the same concentration as the average given in the table for the San Antonio River at Goliad.

The analysis of a sample obtained at Fentress, Caldwell County, which is served from the San Marcos River, shows a water that is low in dissolved solids but very hard. The sample obtained at Three Rivers from the Frio River was hard but the amount of dissolved solids was just below 500 parts per million. The sample from Atascosa River water at Campbellton, Atascosa County, had a dissolved solids content above 1,000 parts per million and was very hard. The sulfate was slightly less than 250 parts per million; the chloride was more than 250 parts per million.

### SELECTED BIBLIOGRAPHY

### PUBLISHED REPORTS

Deussen, A. and Dole, R. B., 1916, Ground water in La Salle and McMullen Counties, Texas: U. S. Geol. Survey Water-Supply Paper 375-G.

Livingston, Penn and Bridges, T. W., 1936, Ground-water resources of Kleberg County, Texas: U. S. Geol. Survey Water-Supply Paper 773-D.

Livingston, Penn, Sayre, A. N., and White, W. N., 1936, Water resources of the Edwards limestone in the San Antonio area, Texas: U. S. Geol. Survey Water-Supply Paper 773-B.

Lonsdale, J. T., 1936, Geology and ground-water resources of Atascosa and Frio Counties, Texas: U. S. Geol, Survey Water-Supply Paper 676.

Lonsdale, J. T. and Day, J. R., 1937, Geology and ground-water resources of Webb County, Texas: U. S. Geol. Survey Water-Supply Paper 778.

Sayre, A. N., 1936, Geology and ground-water resources of Uvalde and Medina Counties, Texas: U. S. Geol. Survey Water-Supply Paper 678.

Sundstrom, R. W. and Follett, C. R., 1945, Ground-water resources of Atascosa County, Texas: Texas State Board of Water Engineers.

Taylor, T. U., 1907, Underground waters of coastal plain of Texas: U. S. Geol. Survey Water-Supply Paper 190.

United States Geological Survey, 1934, Ground water in Dimmit and Zavala Counties, Texas: Press release.

In addition to the above-listed reports, mimeographed publications containing records of wells and springs, drillers' logs, partial chemical analyses of water from wells and springs, and maps showing the location of wells have been released by the Texas State Board of Water Engineers for the following counties in the region: Aransas, Bee, Brooks, Calhoun, Comal, DeWitt, Dimmit, and Zavala, Gonzales, Guadalupe, Hays, Hidalgo, Jim Hogg, Jim Wells, Karnes, Kendall, Kinney, Live Oak, Nueces, Refugio, San Patricio, Victoria, and Wilson.

### UNPUBLISHED REPORTS

The following manuscript reports giving results of ground-water investigations are available for reference in the offices of the Geological Survey and Texas State Board of Water Engineers at Austin:

1940, Ground water in the Corpus Christi area.

1942, Relation of shallow ground water to Las Moras Springs.

1942, Ground water in the vicinity of San Marcos and Buda.

1943, Recent observations of ground-water conditions in the vicinity of Kingsville.

1944, Ground-water supply for the Celanese plant at Bishop.

1944, Ground-water conditions in the Premont-Falfurrias district, Texas.

1946, Ground water in the lower Rio Grande Valley.

# PUBLIC WATER SUPPLIES

## ARANSAS COUNTY

### ROCKPORT

Population in 1940: 1,729.

Source of information: Tom Shults, water superintendent, July 17, 1945.

Ownership: Municipal. Source of supply: 3 wells.

Well 1. Six blocks north of elevated tank; drilled in 1938 by Layne-Texas Co.; depth, 78 feet; diameter, 13 to 6 inches; screen from 68 to 78 feet; deep-well turbine pump and 3-horsepower electric motor.

Well 2. About 200 feet from well 1; drilled in 1938 by Layne-Texas Co.; depth, 78 feet; diameter, 13 to 6 inches; screen from 68 to 78 feet; deepwell turbine pump and 3-horsepower electric motor.

Well 3. One block west of well 2; drilled in 1944 by Layne-Texas Co.; depth, 78 feet; diameter, 16 to 8% inches; screen from 53 to 78 feet; deep-well turbine pump and 3-horsepower electric motor; static water level, 16 feet below land surface, Aug. 6, 1944; pumping level, 61 feet below land surface when pumping 28 gallons a minute, August 6, 1944.

Pumpage (estimated): 75,000 gallons a day for 3 months; 50,000 gallons a day for 9 months.

Storage: Elevated tank, 50,000 gallons; ground reservoir, 55,000 gallons.

Number of customers: 400.

Treatment: None.

### Analyses

[Collected July 17, 1945. pH for each well is 7.6. Analyzed by J. H. Rowley]

	w	Cell 1	Well 3		
	Parts per million Equivalent per million		Parts per million	Equivalents per million	
Silica (SiO ₂ ) Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Blearbonate (HCO ₂ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	92 16 182 12 339 15 292 0	4. 59 1. 32 7. 90 31 5. 56 . 31 8. 24 . 00 . 01	15 96 13 116 13 315 5.7 211 .2 .8 670 293	4.79 1.07 5.06 .33 5.16 .12 5.95 .01	

# Driller's log, well 3

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
White sand	18	18	White sand	6	65
ray sand	15	80			

# ATASCOSA COUNTY

### CAMPBELLTON

Population in 1940: 250.

Source of information: J. N. Ahns, superintendent, Aug. 14, 1945.

Ownership: Municipal.

Source of supply: Atascosa River. Water is pumped from river to an automatic

pressure system.

Pumpage: No information.

Storage: Pressure tank, 1,500 gallons.

Number of customers: 50.

Treatment: None.

# Analysis

# [Collected Aug. 14, 1945. pH is 8.2. Analyzed by J. H. Rowley]

:	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₃ ) Iron (Pe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	16 46 21 283 26 294	2. 30 1. 73 12. 29 . 67 4. 82	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	223 265 1.0 .5 1,030 202	4. 64 7. 47 . 05 . 01

### CHRISTINE

Population in 1940: 286.

Source of information: Glen Patterson, water superintendent, May 25, 1944.

Ownership: Municipal.

Source of supply: One well in north part of town; drilled in 1917; depth, 1,314 feet; diameter, 6 to 4 inches; well flows with a head of 25 feet above land surface; well is connected directly with the mains.

Pumpage: No information.

Storage: None.
Treatment: None.

### Analysis

[Collected May 25, 1944. pH is 8.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Pe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	. 08 4. 8 1. 4 667	0. 24 . 12 29. 01 . 12 12. 17	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃		3.16 14.02 .09 .03

### COUGHRAN

Population in 1940: 50.

Source of information: W. H. Gibson, owner, Aug. 14, 1945.

Owner: W. H. Gibson.

Source of supply: One well, northeast of railroad station in Coughran; depth, 885 feet; diameter, 6 inches; well flows into elevated tank; artesian pressure, 20.5

feet above land surface, May 1944.

Pumpage: No information.

Storage: Elevated tank, 5,000 gallons.

Number of customers: 15.

Treatment: None.

### Analysis

[Collected Aug. 14, 1945. pH is 8.4. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )— Iron (Fe)— Calcium (Ca)— Magnesium (Mg) Sodium (Na)— Potassium (K)— Bicarbonate (HCO ₃ )	3.7 1.2 373	0. 18 . 10 16. 22 . 38 10. 42	Sulfate (SO ₄ ) Chloride (Cl) Fluoride Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₄	94 164 1.0 0 996 14	1. 96 4. 63 . 05 . 00

### JOURDANTON

Population in 1940: 950.

Source of information: Eva Childress, city secretary, Aug. 14, 1945.

Ownership: Municipal.

Source of supply: One well at standpipe; drilled in 1930 by Layne-Texas Co.; depth, 1,635 feet; diameter, 10 to 6 inches; deep-well turbine pump and electric motor; static water level, 20 feet below land surface; yield, 161 gallons a minute with draw-down of 57.5 feet.

Pumpage: No information.

Storage: Elevated tank, 55,000 gallons; ground-storage reservoir, 50,000 gallons.

Number of customers: 248. Treatment: Chlorination.

# Analysis

# [Collected Aug. 14, 1945. pH is 7.6. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO2) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO3)	26 11	3. 44 1. 07 1. 15 . 28 4. 36	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	31 32 4 .5 336 226	0, 65 . 90 . 02 . 01

# Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Surface soil	4	4	Shale and boulders	56	842
Clay.		54	Rock	2	844
Rock		55	Shale.	13	857
Blue shale	14	69	Sand		910
Rock	2	71	Sandy shale		975
Blue shale and boulders	115	186	Rock	2	977
Rock	110	187	Hard shale		997
Blue shale		200	Sand	46	1, 043
Rock (nyrites)	10 2	202	Sandy shale		1, 069
Rock (pyrites) Hard sand	22	224	Rock	20	1, 071
Blue shale and boulders	20	244	Shale	15	1, 086
Rock	20	246	Sand	43	1, 129
Shale and sand	14	260	Rock	3	1, 13
Rock	14	261	Shale	16	1, 148
Shale.		280	Rock	10	1, 150
Rock	19	280 282		24	1, 174
Sand .	24	306	Sand		1, 17
Shale and boulders	23		Rock	17	
Pools (marrison)	23	329	Shale		1, 19
Rock (pyrites)	3	332	Sand (good)	51	1, 243
Shale	21	353	Rock	4	1, 247
Rock	1 1	354	Shale	46	1, 293
Shale	10	364	Rock	3	1, 296
Rock	1 1	365	Shale and boulders	85	1, 38
hale and boulders		512	Rock	2	1, 38
Hard sand	23	535	Shale	8	1, 39
hale and boulders		558	Rock	6	1, 397
and	20	578	Shale and boulders	47	1, 444
hale and boulders	22	600	Rock	3	1, 447
andy shale		680	Sand (dry)	45	1, 49
lock		681	Shale_	16	1, 50
andy shale	104	785	Sand (hard streaks)	96	1, 60
Rock	1 1	786	Coarse-grained white sand	31	1, 635

### NORTH PLEASANTON

Population in 1940: 673.

Source of information: Hammond Rose, owner of distribution system, Aug. 14, 1945.

Ownership: Municipal (Missouri Pacific Railway Co. owns the well, Hammond Rose owns the distribution system).

Source of supply: One well at Missouri-Pacific Railroad shops; drilled in 1928; depth, 1,550 feet; diameter, 8 inches; well flows directly into distribution system; artesian head 69 feet above land surface, May 9, 1944.

Pumpage: Estimated 15,000 gallons a day.

Storage: None.

Number of customers: 75.

Treatment: None.

# Analysis

[Collected Aug. 14, 1945. pH is 7.5. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	64 7.8 27	3. 19 . 64 1. 19 . 26 3. 38	Sulfate (SO ₄ ) Chloride (CI): Nitrate (NO ₃ ) Fluoride (F) Dissolved solids Total hardness as CaCO ₃	40 36 0 1.0 303 192	0.83 1.02 .00 .05

### PLEASANTON

Population in 1949: 2,074.

Source of information: B. B. Gillett, Aug. 14, 1945.

Ownership: Municipal.

Source of supply: One well at elevated tank; drilled in 1917; depth, 815 feet; diameter, 8 to 4 inches; deep-well turbine pump and electric motor; static water level about 10 feet below land surface; well flows when drilled; yield, 150 gallons a minute.

Pumpage: Estimated average, 50,000 gallons a day; maximum in summer, about

100,000 gallons a day.

Storage: Elevated tank, 75,000 gallons; concerte ground reservoir, 75,000 gallons.

Number of customers: 430.

Treatment: None.

Analysis, well 1

[Collected Aug. 14, 1945. pH is 8.0 Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	.05 7.8 3.8 175	0.39 .31 7.62 .16 5.81	Sulfate (SO ₄ ). Chloride (C1). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	0.7 94 .2 0 480 35	0. 01 2. 65 . 01 . 00

### POTEET

Population in 1940: 2,315.

Source of information: H. R. De Viviss, water superintendent, Aug. 14, 1945.

Ownership: Municipal.

Source of supply: One well at elevated tank; drilled in 1928 by J. Wolfe; depth, 835 feet; diameter, 6 inches; centrifugal pump and electric motor; well flows with a head of 12 feet above land surface, Apr. 25, 1944.

Pumpage: Estimated 38,000 gallons a day in summer, 10,000 gallons a day in winter.

Storage: Elevated tank, 55,000 gallons.

Number of customers: 357.

Treatment: None.

### Analysis, well 1

[Collected Aug. 14, 1945. pH is 7.8. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	17 1.3 25 5.0 24 5.6 48	1. 248 . 411 1. 065 . 143 . 787	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	33 49 . 2 0 196 83	0.0687 1.382 .011 .000

### BANDERA COUNTY

### BANDERA

Population in 1940: 1,250.

Source of information: F. C. Billins, president of district, Nov. 2, 1945. Owner: Bandera Water Control and Improvement District No. 1.

Source of supply: 2 wells.

Well 1. Drilled in 1940; depth 467 feet; diameter, 10 inches; deep-well cylinder and pump jack driven by electric motor; static water level, 40 feet below land surface; yield, 26 gallons a minute (breaks suction at yield in excess of 26 gallons a minute).

Well 2. Drilled in 1945 by Rayfield Bros.; depth, 435 feet; diameter, 6 inches; deep-well cylinder and pump jack driven by electric motor; yield, 40 gallons a minute.

40 gallons a minute.

Pumpage (estimated): Summer, 430,000 gallons; winter, 200,000 gallons. Storage: Elevated tank, 60,000 gallons; ground storage, 60,000 gallons.

Treatment: None.

Number of customers: 250.

### Analyses

[Collected Nov. 2, 1945. pH: Well 1, 6.9; well 2, 7.2. Analyzed by J. H. Rowley and C. B. Cibulka]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	86 62 39 20 358 220 36 2, 4	4. 29 5. 10 1. 70 . 51 5. 87 4. 58 1. 02 . 13 . 00	14 1.1 73 51 38 21 362 139 37 2.8 0 560 392	3. 64 4. 19 1. 64 5. 93 2. 89 1. 04 1. 15

### BEE COUNTY

### BEEVILLE

Population in 1940: 6,789.

Source of information: C. R. Gordon, manager, April 19, 1945.

Owner: Central Power & Light Co.

Source of supply: 3 wells.

Well 2. At pump station; drilled in 1937 by Layne-Texas Co.; depth, 1,539 feet; diameter, 15½ to 8 inches; deep-well turbine pump and 40-horse-power electric motor; pump set at 184 feet; static water level, 56 feet below land surface when drilled, 61 feet on June 26, 1934, 63 feet on November 10, 1939, and 73 feet on November 11, 1942; yield, 500 gallons a minute; temperature, 95° F.

Well 3. At pump station; drilled in 1941 by Layne-Texas Co.; depth, 1,539 feet; diameter, 12¾ to 6¾ inches; screen from 1,484 to 1,533 feet; deepwell turbine pump and 50-horsepower electric motor; pump set at 215 feet; static water lever, 68 feet below land surface in April 1943; yield, 490 gallons a minute; temperature, 95° F.

Well 4. At intersection of Monroe and Cleveland Streets; drilled in 1945 by Layne-Texas Co.; depth, 622 feet; diameter, 14 to 8% inches; screens between 528 and 622 feet; static water level reported 84 feet below land surface when drilled; yield, during test, 400 gallons a minute with drawdown of 95 feet (new well unused to date).

Pumpage: Maximum, 750,000 gallons; average, 500,000 gallons a day.

Storage: Elevated tank, 150,000 gallons; concrete ground reservoir, 50,000

gallons.

Number of customers: 1,207. Treatment: Chlorination.

# Analysis, well 3

# [Collected Apr. 19, 1945. pH is 7.5. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ). Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ).	19 . 15 7. 1 1. 3 514 27 601	0. 35 . 11 22. 36 . 69 9. 85	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	0.9 480 1.8 .8 1,350 23	0. 02 13. 54 . 09 . 01

# Driller's logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)						
Weil 2											
Soil	22 88 50 55 120 20 10 15 10 70 75 5	15 28 70 92 180 230 285 405 425 435 450 460 530 605 610 625 630 750	Rock Brown clay, hard Clay, hard Rock Clay Gumbo Sandy shale Clay Shale Shale and boulders Tough clay Shale Hard sand Sand rock Hard shale Sand, some layers of shale	15 5 10 65 25 40 325 25 15 25 3 12 8	755 815 830 835 835 910 9355 975 1, 300 1, 325 1, 340 1, 385 1, 388 1, 389 1, 470 1, 539						

Driller's logs—Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		We	ell 3		
Soil Sand and caliche Caliche Sand and caliche Caliche Sand and caliche Caliche Sand and caliche Hard caliche Red clay Rock Red clay and lime Sand Cavity Sand, hard layers Clay Lime rock Red clay Lime rock Red clay Lime rock Sand Clay Sand Sand Sand Sand Sand Sand Sand Sand	24 8 30 6 5 47 15 8 6 9 79 21 1	5 12 23 39 44 47 154 178 186 216 222 227 274 289 297 303 312 391 413 427 435 455 523 538 540 580 589 595	Fine-grained sand and clay Brown clay	22 50 25 68 28 35 30 27 7 51 17 5 46 9 10 10 10 25 25 17 25 14 34 34 34 9 9 9 13 11 18 25 29 11 11 11 11 11 11 11 11 11 11 11 11 11	755 806 833 901 922 964 994 1, 021 1, 077 1, 096 1, 011 1, 147 1, 156 1, 166 1, 177 1, 203 1, 237 1, 311 1, 324 1, 327 1, 311 1, 344 1, 375 1, 311 1, 444 1, 444 1, 444
Clay Clay Gumbo	27 5 103	627 633 736	Good sandShale	50 4	1, 53 1, 53
		We	11 4		
Soil	5 6 19 7 5 96 33 25 30 58 62 10	5 111 30 37 42 138 171 196 226 226 24 346 356	Lime 'Clay and lime Sandy clay, layers rock. Clay and hard layers Sand Clay Sand Sand Sand Clay Sand Clay Clay Clay Clay Clay Clay Clay Clay	6 36 36 90 24 4 11 7 7 7 41	362 398 434 524 548 552 563 577 618 622

### PETTUS

Population in 1940: 700.

Source of information: C. R. Gordon, manager, Apr. 19, 1945.

Owner: Central Power & Light Co.

Source of supply: 2 wells.

Well 1. At standpipe; drilled in 1930 by Layne-Texas Co.; depth, 238 feet; diameter, 8¼ to 6 inches; Hi-Lift pump and 5-horsepower electric motor; standby well.

Well 2. About 50 feet south of well 1; drilled in 1944 by Layne-Texas Co.; depth, 367 feet; diameter, 8½ to 6 inches; underreamed and gravel-walled; screen from 327 to 367 feet; deep-well submersible pump and 5-horsepower electric motor; yield, 40 gallons a minute.

Pumpage (estimated): Average, 25,000 to 30,000 gallons a day.

Storage: Standpipe, 50,000 gallons.

Number of customers: 62.

Treatment: Occasional chlorination.

### Analysis, well 2

# [Collected Apr. 18, 1945. pH is 7.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	33 1.9 182 31 166 23 344	9. 08 2. 55 7. 23 . 59 5. 64	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	81 428 . 6 1. 2 582 1, 120	1. 69 12. 07 . 03 . 02

# Driller's log, well 1

	Thickness (feet)	Depth (feet)	Ì	Thickness (feet)	Depth (feet)
Surface Hard rock Hard caliche Hard sand Hard caliche Soft sand Lime rock Packsand Clay Sand Clay, hard layers Sand	10 7 14 4 14 12 2 9 58 15 25	10 17 31 35 49 61 63 72 130 145 170 185	Clay, hard layers Sand Clay Sand Gumbo Sand Gumbo Hard sand Sand Gumbo Sand Gumbo Gambo Gumbo Gumbo Gumbo Sand	25 53 48 3 1 21 20 14 3 12 20 20	210 263 311 314 315 336 356 370 373 385 405

### BEXAR COUNTY

### ALAMO HEIGHTS

Population in 1940: 5,700.

Source of information: Paul G. Villaret, water superintendent, Nov. 16, 1945.

Ownership: Municipal.

Source of supply: 3 wells near city hall.

Well 1. Old well just northeast of city hall; depth, about 550 feet; deep-well turbine pump and 60-horsepower electric motor; yield, 450 gallons a minute.

Well 2. About 200 feet west of well 1; depth, about 550 feet; deep-well turbine pump and 40-horsepower electric motor; yield, 300 gallons a minute.

Well 3. About 300 feet northwest of well 1, drilled in 1939 by I. L. Dingham, depth, 603 feet; diameter, 13 inches; cased to 424 feet; deep-well turbine pump and 60-horsepower electric motor; yield, 450 gallons a minute.

Pumpage: Average, 395,000 gallons a day during August 1945.

Storage: Elevated tank, 100,000 gallons; concrete ground reservoir, 150,000 gallons.

ganons.

Number of customers: 1,350.

Treatment: None.

# Analysis, well 1

# [Collected Nov. 16, 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	$ \begin{array}{c} 12\\ 67\\ 16\\ 3.4\\ 247 \end{array} $	3. 344 1. 316 . 148 4. 049	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total-hardness as CaCO ₃	17 12 . 2 3. 5 261 233	0. 354 . 338 . 011 . 056

# Driller's log, well 3

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
SoilCalicheCaliche and yellow clay	2 22 54	2 24 78	Hard brown Edwards lime- stone Soft brown Edwards lime-	5	485
Hard blue clay Yellow clay	12	90 110	stone Hard brown Edwards lime-	25	510
Gray shale Hard Taylor chalk	35 50	145 195	stoneSoft white lime	16 10	526 536
Austin chalk, brown	30	225	Hard limestone	2	538
Hard gray chalky shale Hard gray chalky rock, Austin.	42	245 287	Soft limestone	1	549 550
Eagle Ford lignite  Buda lime  Del Rio blue clay	22 56	309 365	Soft porous spongy limestone. Soft lime rock.	$\begin{array}{c c} 2 \\ 2 \end{array}$	552 554
Del Rio blue clay	50	415	Hard Edwards limestone, soft streaks	18	572
clay Hard sandy yellow lime (13"	7	422	Soft honeycomb lime Hard lime rock	1/2 51/2	5721/ <u>2</u> 578
O. D. Casing cemented at	2	424	Soft honeycomb lime	2	580 596
424 feet) Hard tan limestone	16	440	Soft honeycomb limestone	4	600
Hard white limestone White Edwards limestone		450 480	Cavity Very hard Edwards lime rock_	2 11/2	602 603 <b>½</b>

### SAN ANTONIO

Population in 1940: 253,854.

Source of information: W. D. Masterson, water superintendent, Nov. 15, 1945.

Ownership: Municipal.

Source of supply: 38 wells.

Austin Road (Terrell Hills). 1 well, depth 600 feet.

North Brackenridge Park station. 1 well; drilled in 1940; depth, 700 feet; diameter, 15 inches; deep-well turbine pump and electric motor; yield, 2,800 gallons a minute.

Brackenridge Park station. 13 wells; depths range from 750 to about 900 feet; diameters are 15, 12, and 8 inches; wells have natural flow but are equipped with booster pumps; temperature, 76° F.

Market Street station. 11 wells; drilled between 1894 and 1936; depths range from 880 to 936 feet; diameters are 15 and 12 inches; wells have natural flow but are equipped with booster pumps; temperature, 76° F.

Mission station. 8 wells; drilled between 1914 and 1945; depths range from about 1,400 to 1,800 feet; diameters are 15, 12, and 10 inches; wells have natural flow but are equipped with booster pumps. Well 8, on bank of San Antonio River; drilled by Draper & Dozier in 1945; depth, 1,400 feet; diameter, 22 to 12½ inches; deep-well turbine pump and electric motor; static water level, 68 feet above land surface; yield, when pumped, 6,250 gallons a minute; temperature, 81.5° F.

Los Angeles Heights station. 1 well; drilled in 1941; depth 1,000 feet; diameter, 15 to 12 inches; deep-well submersible pump and electric motor; yield, 1,400 gallons a minute.

Olmos Heights station. 1 well; drilled in 1940; depth, 900 feet; diameter, 15 to 12 inches, deep-well turbine pump and electric motor; yield, 1,400 gallons a minute.

West Mistletoe station. 1 well; drilled in 1942; depth, 900 feet; diameter, 15 inches; deep-well submersible pump and electric motor; yield, 2,100 gallons a minute.

Woodlawn Lake station. 1 well; drilled in 1942; depth, 900 feet; diameter, 12 inches; deep-well turbine pump and electric motor; yield, 2,100 gallons a minute.

# Average pumpage, in millions of gallons a day

[Maximum, 56,000,000 gallons a day in August 1944. Total capacity of wells is 98,000,000 gallons a day]

Month	1939	1940	1941	1942	1943	1944	1945
January February March April May June July August September October November December	19. 4 22. 2 21. 1 30. 1 31. 1 33. 0 34. 7 29. 1 30. 4 28. 9 25. 7 22. 5	24. 0 24. 0 24. 1 27. 6 26. 7 28. 3 28. 3 38. 0 31. 4 24. 8 23. 0 21. 0	21. 9 22. 7 20. 7 24. 8 24. 4 27. 6 33. 5 38. 7 32. 1 23. 9 24. 5 21. 7	23. 8 25. 4 24. 0 26. 9 26. 0 35. 5 32. 2 38. 4 31. 4 27. 1 28. 5 25. 9	27. 8 32. 3 27. 0 34. 3 37. 4 35. 2 38. 8 44. 7 33. 2 29. 0 29. 9 26. 3	27. 6 28. 4 25. 5 32. 2 30. 3 37. 9 44. 9 49. 2 36. 7 33. 7 33. 1 29. 2	30. 3 32. 9 29. 3 34. 5 38. 1 45. 3 45. 9 46. 5

Storage: 3 elevated tanks: Hildebrand Avenue tank, 1,000,000 gallons; Morning-side Avenue tank, 1,500,000 gallons; and Terrell Hills tank, 250,000 gallons. Standpipe on Dakota Street, 2,500,000 gallons.

Number of customers: 58,049.

Treatment: Chlorination at Market Street station, which is connected with the Mission station and serves the southern part of the city.

# Analyses

Parts per lents per million million Parts per million Parts per million
-------------------------------------------------------------------------

### Brackenridge Park station

[Composite sample of 13 wells; collected Nov. 15, 1945. pH is 8.17 Analyzed by J. H. Rowley]

Silica (SiO ₂ ) Iron (Fe) Calcium Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	. 46 65 16 2. 1 1. 6		Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₄	0 3. 2	0. 271 . 338 . 052
-----------------------------------------------------------------------------------------------------------------------	----------------------------------	--	--------------------------------------------------------------------------------------------------------------------------------------------	-----------	--------------------------

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
ra		Market St			
[Composite of 11 we	lls; collecte	d Nov. 15, 1	945. pH is 8.2. Analyzed by J.	H. Rowley	7] 
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	12 .08 66 15 2.9 2.0 245	3. 294 1. 234 . 125 . 051 4. 016	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	13 12 0 4, 9 252 226	0. 27 . 33 . 00 . 07
(C. V. stad	37 15 1		ation, well 8		
Сопесте	Nov. 15, 1	945. pH 18	8.0. Analyzed by J. H. Rowley		
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )	15 .06 68 18 7.8 2.0 240	3. 39 1. 48 . 34 . 05 3. 93	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₂ ) Dissolved solids Total hardness as CaCO ₃	35 19 . 2 3. 2 295 244	0. 73 . 5 . 00 . 04
	Thickness		rs' logs	Thickness	Depth
	(feet)	(feet)		(feet)	(feet)
	В	rackenridge	Park station		
Pit. Blue shale and shells. Austin chalk Eagle Ford lime and shells. Lignite. Buda lime Del Rio mud Edwards lime, light-gray Soft yellow lime Gray and yellow lime Yellow lime, 3-inch crevices	197 67 220 32 48 54 8 3 23 40	41 238 305 525 557 605 669 667 670 693	Hard white lime Porous yellow lime Soft yellow lime Hard yellow lime Honeycomb, big water Hard yellow lime Honeycomb Hard gray lime and flint Honeycomb Hard flinty lime Honeycomb Hard flinty lime Honeycomb Hard flinty lime Hard flinty lime	6583943993449937	75 75 76 76 77 78 78 79 79 79 80 81 81
at 710 and 733 feetPorous yellow lime			Hart Hilly Hill		··
at 710 and 733 feet	M	larket Stree	et station, well 1	-	

# Driller's logs—Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Ma	rket Street	station, well 15		
Rotary to surface	6	6	Austin chalk, brown	32	522
Sandy soil and rock	10	16	Very rough white chalk	6	528
Yellow and blue clay	13	29	Dark brown chalk	52	580
Gravel and sand	4	33	Gray Austin chalk	52	633
Blue shale	91	124	Eagle Ford lignite	26	65
Shale and shell rocks		160	Buda lime	54	713
Shale		206	Del Rio	61	773
Rock	15	221	Hard limey shale	10	783
Hard gray shale	41	262	Georgetown lime	23	800
Very hard gray shale	37	299	"Doughby" Edwards	2	808
Rock	3	302	Hard brown Edwards	4	81:
Rock Hard gray shale Rock	2	304	Hard and soft lime, brown	16	82
Rock	2	306	Cavity	2	830
Very hard gray shale		324	Hard and soft lime	38	868
Very hard rock, chalk	9	333	Porous or cavity	1	869
Hard gray shale	3	336	Hard lime	17	88
Hard rock, chalk	2	338	Porous or cavity	2	888
Broken lime and hard shale	15	353	Hard lime with soft streaks	5	89
Very hard limestone	8	361	Hard and soft lime with po-		
Hard gray sticky shale	29	390	rous or honeycomb struc-	40	00
Broken lime, streak of shale,	94	40.4	Exceptionally hard rock,	42	934
TaylorAustin chalk, white		484 490	black flint	1	936
Austin chaik, white	0	490	Diack mint.	1	
		Mission sta	ation, well 8		
			1	I I	
Gravel and clay	30	30	Shale	31	1, 23
Yellow clay	15	45	Lime	21	1, 25
Gravel	5	50	Lime	10	1, 26
Blue clay		80	Shale and lime	18	1, 28
Brown shale		780	Lime	22	1, 30
Hard Taylor	250	1,030	Lost circulation	5	1, 31
Austin chalk	175	1, 205	Edwards limestone	78	1, 400

### BROOKS COUNTY

### FALFURRIAS

Population in 1940: 2,800.

Source of information: Ted Lester, operator, Mar. 10, 1945.

Owner: Central Power & Light Co.

Source of supply: 3 wells at water and ice plant near center of city.

Well 1. Drilled in 1922 by Chester Downs; depth, 749 feet; diameter, 5%6 inches; 63 feet of screen at bottom; air-lift; static water level 26.2 feet below land surface on November 5, 1943; yield, 140 gallons a minute; stand-by well; temperature, 84° F.

Well 2. Drilled in 1930 by Layne-Texas Co.; depth, 755 feet; diameter, 12 to 8 inches; 61 feet of screen at bottom; deep-well turbine pump and 30-horsepower electric motor; static water level, 25.4 feet below land surface on November 5, 1943; yield, 200 gallons a minute.

Well 3. Drilled in 1945 by Layne-Texas Co.; depth, 787 feet; diameter, 10¾ to 5½ inches; screen from 678 to 766 feet; deep-well turbine pump and 25-horsepower electric motor; static water level, 54.7 feet below land surface in March 1945; yield, 305 gallons a minute with a draw-down of 128 feet after 8 hours pumping.

# PUBLIC WATER SUPPLIES

# Average pumpage, in thousands of gallons a day

	1941	1942	1943	1944	1945
January		126	139	160	245
February March April		140 135 152	168 161 180	182 208 254	280
May June		145 220	218 191	255 254	
TulyAugust		142 169	225 274	283 325	
September October	114	163 152	218 173	263 276	
November December	143 111	175 122	161 153	$\frac{258}{267}$	

Storage: Concrete ground reservoir, 50,000 gallons; elevated tank, 50,000 gallons.

Number of customers: 631.

Treatment: Occasional chlorination.

Analyses

[Collected Mar. 10, 1945. pH: Well 1, 8.1; well 2, 7.8. Analyzed by M. L. Beyley]

	Well 1		w	ell 2
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃ .	12 17 161 9.1 286 42 183	2.10 1.40 7.02 .23 4.69 .87 5.16 .03	23 .08 40 17 167 9.9 289 41 188 .6 6 629 170	2.00 1.40 7.27 .25 4.74 .85 5.30 .03

# Drillers' logs

	Well 2			Well 3	
	Thick- ness (feet)	Depth (feet)		Thick- ness (feet)	Depth (feet)
Soil Clay White sand Clay White sand Clay Hard caliche Clay Soft caliche Hard dry clay Soft clay Hard caliche Tough clay and lime Tough clay and lime rock Sand and soft clay Sand Clay Sand and clay Sand and clay Soft clay	6 12 3 18 14 15 8 23 9 21 74 12 4 6 5 5	1 7 19 22 40 54 69 77 100 130 204 220 226 231 254 300	Soil. Clay. Sand Clay. Hard caliche Clay and caliche. Sandy clay Caliche. Caly and lime Sand and clay Sand Sand and clay Hard clay Sand and boulders. Clay and sand Sand Hard clay Brown sand	3 17 36 26 10 90 27 6 65 60 24 10 59	1 8 20 23 40 76 102 112 202 249 255 320 380 400 424 434 493 511

## Drillers' logs-Continued

	We	ell 2		We	11 3
	Thick- ness (feet)	Depth (feet)		Thick- ness (feet)	Depth (feet)
Hard dry clay Rock Clay Sand and boulders Tough clay Sand Gumbo Sand (froken) Gumbo Tough lime Sand Hard clay Sand Hard sand and lime Tough gumbo Hard water sand Gumbo Soft water sand Gumbo Sand Tough gumbo Sand Tough gumbo Sand Soft water sand Gumbo Sand Sand Sand Tough gumbo Sand Sand Sand Sand Sand Sand Sand Sand	6 20 23 9 27 6 22 3 4 3 7 23 4 17 6 27 58	352 354 360 380 403 412 439 445 467 470 474 477 540 547 570 574 624 682 750 751 755	Hard sand and lime	54 2 36 5 18 20 20 68 3	565 567 602 607 625 645 696 716 784 787

#### CALDWELL COUNTY

## DALE

Population in 1940: 200.

Source of information: A. R. Osteen, owner, Feb. 27, 1946.

Owner: A. R. Osteen.

Source of supply: Well near M. K. & T. Railway track in southeast edge of town; drilled in 1927 by A. R. Osteen; depth, 110 feet; diameter, 7 inches; cylinder pump and electric motor; static water level, 71.6 feet below land surface on Feb. 27, 1946.

Pumpage: No record.

Storage: Elevated tank, about 3,000 gallons.

Number of customers: 20.

Treatment: None.

# Analysis [Collected Feb. 27, 1946. $\,$ pH is 7.4. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO2) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO2)	36 17	6, 59 1, 48 1, 57 , 43 6, 16	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	72 85 . 0 . 8 647 404	1.50 2.40 .00 .01

#### FENTRESS

Population in 1940: 250.

Source of information: J. C. Dauchy, gin operator, Feb. 9, 1943.

Owner: Fentress-Prairie Lea Utilities Co.

Source of supply: San Marcos River and well; water is pumped both from the river and a concrete-curbed dug well about 40 feet deep near the river bank; a low dam has been constructed below the pumping station to provide channel storage; the station is equipped with three Triplex pumps; this plant supplies Fentress, Prairie Lea, and a rural area consisting of 7,700 acres of farms.

Pumpage: No data available.

Storage: Elevated tank at Fentress, estimated 15,000 gallons; elevated tank at Prairie Lee, 15,000 gallons; elevated tank in rural area, 60,000 gallons.

Number of customers: 159. Treatment: Chlorination.

## Analysis of well water

## [Collected Feb. 9, 1943. pH is 8.0. Analyzed by J.H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	67 19 12	3. 34 1. 56 . 51 . 09 4. 21	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃ )	26 20 . 6 10 300 245	0. 54 . 56 . 03 . 16

#### LOCKHART

Population in 1940: 5,018.

Source of information: M. Lancaster, manager, Public Utilities Co., Feb. 6, 1946.

Ownership: Municipal.

Source of supply: Spring and two large open-pit wells.

Spring. At old waterworks on Brazos Street, four-tenths mile east of elevated tank; yield, 350 gallons a minute.

Well 2. One block east of water tower; depth about 20 feet; yield, 600 gallons a minute; water unused since 1943.

Well 3. 150 yards northwest of elevated tank; yield, 375 gallons a minute.

Pumpage: Maximum, 218,000; minimum, 172,000; average, 195,000 gallons a day. Storage: Elevated tank, 300,000 gallons; ground reservoir, 430,000 gallons.

Number of customers: 1,095.

Treatment: Coagulation, sedimentation, and chlorination.

L,

## Analyses

[Collected Feb. 8, 1946. pH: spring, 7.3; well 2 and 3, 7.4. Analyzed by C. B. Cibulka]

	Spring		Well 2		Well 3	
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	126 6.1 54 12 322 47 82 82 .0	6. 29 . 50 2. 34 . 31 5. 28 . 98 2. 31 . 00	12 .96 246 15 269 15 293 321 465 .6 0 1,620 676	12. 28 1. 23 11. 70 3. 38 4. 80 6. 68 13. 11 . 03 . 97	15 .14 166 10 147 11 308 174 218 .0 60 979 456	8. 29 . 82 6. 40 . 28 5. 05 3. 62 6. 15 . 00 . 97

#### LULING

Population in 1940: 4,437.

Source of information: A. O. Krauskoff, water superintendent, Feb. 7, 1946.

Ownership: Municipal.

Source of supply: 2 wells about 300 feet apart, at the Central Power & Light Co. plant, between Davis and Fannin Streets.

- Well 1. Depth, 320 feet; diameter, 16 to 8 inches; deep-well turbine pump and 30-horsepower electric motor; pump set at 125 feet; yield, 460 gallons a minute.
- Well 2. Depth, 304 feet; diameter, 16 to 8 inches; deep-well turbine pump and 25-horsepower electric motor; pump set at 168 feet; yield, 300 gallons a minute.

Pumpage (estimated): Average, 185,000 gallons a day; summer, 325,000 gallons a day.

Storage: 2 standpipes, 188,000 and 84,600 gallons; ground reservoir, 50,000 gallons.

Number of customers: 1,181.

Treatment: None.

## Analyses

[Collected Feb. 9, 1943. pH for each well is 8.4. Analyzed by J. H. Rowley]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sullate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	2.7 1.7 419 5.0 628 178 163	0. 13 14 18. 20 13 10. 28 3. 71 4. 60 .01	8. 0 .09 2. 0 1. 4 416 5. 2 545 227 170 .0 1, 098	0.10 .12 18.09 .13 8.92 4.73 4.79 .00

## Drillers' logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		We	all 1		
Gravel	20 1 38 2 11 15 33 12	20 40 41 79 81 92 107 140 152 167 173	Sand rock Sand Rock Sand Rock Sand Rock Sand Rock Sand Rock Sand	4 26 2 6 2 58 2 4	176 186 206 208 214 216 277 276 286 285
		We	211 2		
Clay and boulders Clay and sand Rock Sand Rock gumbo Sand Gumbo Sand Gumbo Gumbo Gumbo	5 5 4 20 20 7	48 111 116 121 125 145 165 172 176	Sand Gumbo Sand Gumbo Sand Gumbo Sand Gumbo Sand Sumbo Sand Sand Lignite	. 4 42 3 10 5 27	187 191 233 236 246 251 278 299 304

#### LYTTON SPRINGS

Population in 1940: 200.

Source of information: D. R. Strawn, operator, Feb. 27, 1946.

Owners: Lytton Springs Park Association. Lytton Springs Gin Co.

Source of supply: Large pit in creek channel and well.

System a. Pit in creek channel owned by Lytton Springs Park Association; dug by L. Glasscock; depth, 18 feet; diameter, 16 feet; piston-type pump and gasoline engine; static water level, 16.9 feet below land surface on February 27, 1946; temperature, 58½° F.

System b. Well owned by Lytton Springs Gin Co.; dug by Mr. Crosswaite; depth, 49 feet; diameter, 17½ feet; jet-type pump and 1½-horsepower electric motor; static water level, 4.74 feet below land surface on Feb. 27, 1946; yield, 12 gallons a minute; temperature, 63° F.

Pumpage: No record.

Storage: Steel ground tank, 20,000 gallons.

Number of customers: 25.

Treatment: None.

## Analysis of well water

## [Collected Feb. 27, 1946. pH is 7.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Pe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	1.7 46 6.7 36	2. 296 . 551 1. 566 . 118 2. 508	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	51	0. 416 1. 438 . 011 . 158

#### MARTINDALE

Population in 1940: 500.

Source of information: Gin operator, Feb. 9, 1943.

Owner: A. H. Smith Gin Co.

Source of supply: Dug well; depth, 27 feet; diameter, 60 inches; 2 Triplen 5-inch

pumps.

Pumpage: No data available.

Storage: Elevated tank, 20,000 gallons.

Number of customers: 90.

Treatment: None.

## Analysis

[Collected Feb. 9, 1943. pH is 7.6. Analyzed by J. H. Rowley.]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	90 23 18	4. 49 1. 89 . 78 . 09 5. 33	Sulfate (SO ₄ ). Chloride (Cl). Fluorine (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	19 21 . 2 57 406 319	0. 40 . 59 . 01 . 92

#### MAXWELL

Population in 1940: 250.

Source of information: B. E. Scheele and A. R. Hoffman, Feb. 14, 1946.

Owners: Upper Terrace Waterworks, Schawe Gin Co., Lower Terrace Waterworks, A. R. Hoffman and O. M. Hoffman.

Source of supply: 2 dug wells.

Upper Terrace Waterworks. Dug well 1¾ miles north of Maxwell; dug in 1916; depth, 20 feet; diameter, 148 to 60 inches; brick walls; piston-type pump and Diesel engine; static water level, 12.1 feet below land surface on Feb. 14, 1946; yield, 400 gallons a minute.

Lower Terrace Waterworks. Dug well 2 miles southwest of Maxwell; dug in 1925; depth, 25 feet; diameter, 69 inches; brick and concrete walls; piston-type pump and 10-horsepower electric motor; static water level, 8.2 feet below land surface on Feb. 14, 1946; reported yield, about 400 gallons a minute with draw-down of 1.5 feet after pumping 24 hours.

Pumpage (estimated): Upper Terrace Waterworks, about 10,000 gallons a day in winter and 30,000 gallons a day in summer; Lower Terrace Waterworks, average about 15,000 gallons a day.

Storage: Upper Terrace Waterworks, concrete ground reservoir, 100,000 gallons; Lower Terrace Waterworks, elevated wooden tank, 20,000 gallons. (Water systems have separate distribution lines).

Number of customers: Upper Terrace, 18; Lower Terrace, 24.

Treatment: None.

## Analysis

[Collected Feb. 14, 1946. pH of Lower Terrace Waterworks, 7.2. Analyzed by C. B. Cibulka]

	Upper Terrace Waterworks			Terrace
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	5.1 38 268 40 81 	6.00 .42 1.64 4.39 .83 2.28	14 244 28 155 22 265 183 426 9 1,300 724	12. 18 2. 30 6. 75 . 56 4. 34 3. 81 12. 01 . 03 1. 60

#### McMAHAN

Population in 1940: 250.

Source of information: J. Chamberlin, owner, Mar. 1, 1946.

Owner: J. Chamberlin.

Source of supply: Well located 100 yards north of cotton gin; drilled in 1929 by Mr. Dannelly, depth, 231 feet; diameter, 5 inches; jet-type pump and 1½-horsepower electric motor; static water level, 48 feet below land surface in November 1945; yield, 10 gallons a minute with pumping level at 64.8 feet below land surface on Mar. 1, 1946; temperature, 73° F.

Pumpage: No record.

Storage: Elevated wooden tank, 2,700 gallons.

Number of customers: 15.

Treatment: None.

## Analyses

[Collected Mar. 18, 1946. pH is 7.5. Analyzed by J. H. Rowley.]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	22 . 19 . 96 . 59 . 134 . 16 . 430	4.79 4.85 5.84 .41 7.05	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	96 229 . 6 22 946 482	2.00 6.46 .03 .35

#### UHLAND

Population in 1940: 100.

Source of information: A. F. Garbrecht, owner, Feb. 8, 1946.

Owner: A. F. Garbrecht.

Source of supply: Spring 2% miles west of Uhland in Hays County; rock walls and concrete cover; 4 miles of 2-inch pipe from spring to Uhland; gravity flow.

Flow: No record. Storage: None.

Number of customers: 5.

Treatment: None.

## Analysis

[Collected Feb. 8, 1946. pH is 7.3. Analyzed by C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	14 .03 114 5.9 9.7 5.0 286	5. 69 . 49 . 42 . 13 4. 69	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	24 21 . 6 57 392 309	0.50 .59 .03 .92

#### CALHOUN COUNTY

#### PORT LAVACA

Population in 1940: 2,069.

Source of information: T. S. Upchurch, water superintendent, July 1945.

Ownership: Municipal.

Source of supply: 3 wells about 31/4 miles northwest of town.

Well 1. Drilled in 1935 by Layne-Texas Co.; depth, 240 feet; diameter, 8 inches; deep-well turbine pump and 5-horsepower electric motor; static water level, 14 feet below land surface on January 5, 1940; yield, 135 gallons a minute with draw-down of 30 feet.

Well 2. About 200 feet southeast of well 1; drilled in 1935 by Layne-Texas Co.; depth, 240 feet; diameter, 8 inches; deep-well turbine pump and 5-horsepower electric motor; yield, 135 gallons a minute.

Well 3. About 500 feet northeast of well 1; drilled in 1942 by Layne-Texas Co.; depth, 242 feet; deep-well turbine pump and 10-horsepower electric motor; yield, 300 gallons a minute.

## Average pumpage, in gallons a day, 1945

January     160,000       February     175,000       March     183,200	April May. June	191, 300
------------------------------------------------------------------------	-----------------------	----------

Storage: Elevated tank, 75,000 gallons; 2 ground reservoirs, 50,000 gallons each.

Number of customers: 604. Treatment: Chlorination.

## Analysis, well 3

## [Collected July 1945. pH is 7.40. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	17 .05 40 14 234 7.7 466	2.00 1.15 10.17 .20 7.64	Sulfate (SO ₄ ). Chloride (CI). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	16 195 1.0 0 768 158	0. 33 5. 50 . 05 . 00

#### SEADRIFT

Population in 1940: 437.

Source of information: J. L. Wilson, water superintendent, July 1945.

Ownership: Municipal.

Source of supply: Well 3 miles southeast of town; drilled in 1939; depth, 86 feet; diameter, 6 inches; deep-well turbine pump and 3-horsepower electric motor; yield about 70 gallons a minute.

Pumpage (estimated): 2,500 gallons a day. Storage: Elevated tank, 50,000 gallons.

Number of customers: 129.

Treatment: Aeration and chlorination.

# Analysis, well 1

## [Collected July 1945. pH is 7.5. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	19 .08 39 19 134 6.6 312	1. 95 1. 56 5. 84 . 17 5, 11	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	26 134 1.4 1.2 536 176	0. 54 3. 78 . 07 . 02

## CAMERON COUNTY

## BROWNSVILLE

Population in 1940: 22,083.

Source of information: R. G. Hall, Aug. 3, 1945.

Ownership: Municipal.

Source of supply: Rio Grande.

Pumpage: Maximum 4,300,000 gallons; average, 2,500,000 gallons a day.

Storage: Ground reservoirs 8,000,000 gallons; no elevated tank, operates on high-

pressure system with 85 to 90 pounds.

Treatment: Coagulation, sedimentation, rapid sand filteration, prechlorination

and postchlorination.

## Analysis, finished water

## [Collected Aug. 3, 1945. pH is 7.8. Analyzed by C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	87	4. 34 1. 40 3. 96 . 28 2. 10	Sulfate (SO) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	220 114 . 6 3. 2 634 287	4. 58 3. 22 . 03 . 05

#### COMBES

Population in 1940: 300.

Source of information: C. P. Morgan, pumper, June 13, 1945.

Owner: Mrs. Doris Templeton.

Source of supply: 5 wells at southeast corner of town near irrigation canal; depth, 32 feet; diameter, 7 inches; 3 wells connected to piston suction pump with 5-horsepower electric motor and 2 wells equipped with windmills; static water level, 8.5 feet below land surface on June 13, 1945; combined yield about 30 gallons a minute; temperature, 75° F.

Pumpage (estimated): Maximum 30,000 gallons a day.

Storage: Steel pressure tank, 10,000 gallons; concrete ground reservoir, 30,000

gallons.

Number of customers: 100.

Treatment: None.

## Analysis of composite sample

## [Collected June 13, 1945. pH is 7.2. Analyzed by J. H. Rowley]

	Parts per million	Eqniva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	32 .11 114 37 325 8.8 418	5. 69 3. 04 14. 13 . 23 6. 85	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	356 308 1.0 5.4 1,390 436	7. 41 8. 69 . 05 . 09

#### HARLINGEN

Population in 1940: 13,306.

Source of information: E. C. Bennett, manager, Central Power & Light Co.,

June 28, 1945.

Owner: Central Power & Light Co.

Source of supply: Canal from Rio Grande.

## Average pumpage, in gallons a day

#### [Maximum 2,800,000 gallons a day]

	1942	1943	1944	1945
January February March April May June July September October November	982, 000 866, 000	1, 068, 000 1, 450, 000 1, 200, 000 1, 550, 000 1, 742, 000 1, 365, 000 1, 563, 000 2, 050, 000 1, 430, 000 1, 085, 000 1, 298, 000	1, 210, 000 1, 534, 000 1, 400, 000 1, 752, 000 1, 688, 000 1, 657, 000 1, 500, 000 1, 752, 000 1, 579, 000 1, 376, 000 1, 376, 000	1, 594, 000 1, 796, 000 1, 776, 000 2, 200, 000 2, 128, 000 2, 282, 000
December	1, 265, 000	1, 172, 000	, , , , , , , , , , , , , , , , , , , ,	

Storage: Elevated tank, 150,000 gallons; impounding reservoir, 55,000,000 gallons.

Number of customers: 3,026.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, prechlorination and postchlorination.

## Analysis of finished water

[Collected Aug. 6, 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	12 .19 92 16 84 7.5 140	4, 59 1, 32 3, 67 , 19 2, 29	Sulfate (SO ₄ ) Chloride (Cl) Flouride (F) Nitrate (NO ₃ ) Dissolved solids Hardness as CaCo ₃	198 114 1.8 3.0 660 196	4.12 3.22 .09 .05

#### LA FERIA

Population in 1940: 1,614.

Source of information: O. O. Butcher, city secretary; H. T. Anderson, water superintendent, June 9, 1945.

Ownership: Municipal.

Source of supply: Well at concrete tank and city hall, drilled in 1929 by Layne-Texas Co.; depth, 216 feet; diameter, 16 to 8 inches; screens at 115-156 and 182-213 feet; deep-well turbine pump and 10-horsepower electric motor; static water level, 7 feet below land surface in December 1929 and 9.2 feet after pump had been shut down 20 minutes on June 9, 1945; yield, 380 gallons a minute with a draw-down of 21 feet; temperature, 78° F.

Pumpage (estimated): Average, 50,000 gallons a day. Storage: Concrete ground reservoir, 45,000 gallons.

Number of customers: 310.

Treatment: None.

## Analysis

## [Collected June 9, 1945. pH is 7.4. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million	`	Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )		4. 79 3. 95 20. 06 . 41 7. 62	Sulfate (SO ₃ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	460 420 1. 2 6. 1 1, 780 437	9. 58 11. 85 . 06 . 10

#### Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil Clay Sand Tough clay Sand Clay	2 30 22 22 22 37 3	2 32 54 76 113 116	Sand Sand rock Clay Sand and boulders Rock Clay	43 2 6 15 1 3	159 161 167 182 183 186

#### LOS FRESNOS

Population in 1940: 475.

Source of information: Hall Palmer, water superintendent, July 11, 1945.

Ownership: Municipal.

Source of supply: Canal from Rio Grande. Pumpage: Average, 20,000 gallons a day.

Storage: Elevated tank, 25,000 gallons; ground reservoir, 45,000 gallons.

Number of customers: 125. Treatment: Chlorination.

## Analysis of finished water

## [Collected Aug. 6, 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	12 92 16 84 7.5 140	4. 59 1. 32 3. 67 . 19 2. 29	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₅ ) Dissolved solids Total hardness as CaCO ₃	198 114 1. 8 3. 0 660 296	4.12 3.22 .09 .05

#### PORT ISABEL

Population in 1940: 1,440.

Source of information: B. B. Burnell, mayor, July 1945.

Ownership: Municipal.

Source of supply: Rio Grande.

Pumpage: No record.

Storage: Elevated tank, 50,000 gallons; impounding reservoirs, 12,000,000 gallons.

Number of customers: 400.

Treatment: Coagulation, sedimentation, rapid sand filtration, and chlorination.

# Analysis of finished water

#### [Collected Aug. 6, 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	12 . 19 92 16 84 7. 5 140	4. 59 1. 32 3. 67 . 19 2. 29	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	198 114 1. 8 3. 0 660 296	4. 12 3. 22 . 09 . 05

#### RIO HONDO

Population in 1940: 804.

Source of information: H. E. Mallornee, city secretary, June 30, 1945.

Ownership: Municipal.

Source of supply: Canal from Rio Grande.

Pumpage: Maximum, 50,000 gallons; average, 30,000 gallons a day.

Storage: Elevated tank, 50,000 gallons.

Number of customers: 145. Treatment: Chlorination.

# Analysis

[Collected June 30, 1945. pH not determined. Analyzed by C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca)	82	4. 09	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F)	238 215	4. 96 6. 06
Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )		2. 63 6. 64 2. 34	Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	877 336	.00

#### SAN BENITO

Population in 1940: 9,501.

Source of information: S. C. Clark, Central Power and Light Co., July 12, 1945.

Owner: Central Power and Light Co.

Source of supply: Resaca de los Fresnos and canal from Rio Grande.

## Average pumpage, in gallons a day

	1944	1945		1944	1945
January February March April May June	488, 000 509, 000 570, 000 621, 000 520, 000 492, 000	551, 000 635, 000 590, 000 585, 000 648, 000 575, 000	July August September October November December	465, 000 487, 000 397, 000 400, 000 400, 000 485, 000	

Storage: Elevated tank, 150,000 gallons; clear well, 165,000 gallons.

Number of customers: 1,686.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, prechlorination and postchlorination.

## Analysis of finished water

[Collected Aug. 6, 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	92 . 16 84	4. 59 1. 32 3. 67 . 19 2. 29	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	198 114 1.8 3.0 660 296	4. 12 3. 22 . 09 . 05

#### COMAL COUNTY

#### NEW BRAUNFELS

Population in 1940: 6,976.

Source of information: C. H. Wimberly, water superintendent, Dec. 4, 1943.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. Drilled in 1941; depth, 116 feet; diameter, 12 inches; centrifugal pump and electric motor; yield, 2,300 gallons a minute with draw-down of 7 feet after 12 hours pumping.

Well 2. About 30 feet north of well 1; drilled in 1941; depth, 102 feet; diameter, 8 inches; centrifugal pump and electric motor; yield, 1,200 gallons a minute.

Average pumpage, gallons a day

	1942	1943		1942	1943
January February March April May June	810, 000 830, 000 940, 000 990, 000 890, 000 1, 457, 000	851, 000 1, 100, 000 1, 068, 000 1, 426, 000 1, 630, 000 1, 254, 000	July	1, 300, 000 850, 000 1, 068, 000	1, 850, 000

Storage: 2 standpipes, 1,000,000 gallons and 370,000 gallons.

Number of customers: 2,200.

Treatment: None.

# Analyses

[Collected Dec. 4, 1943. pH: well 1 is 7.2; well 2 is 7.1. Analyzed by J. H. Rowley]

·	Well 1		w	ell 2
,	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO2) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	.08 73 17 5.1 1.6 263 24 14 .2 5.8	3. 64 1. 40 . 22 . 04 4. 31 . 50 . 39 . 01 . 09	11 73 17 3. 9 1. 6 261 24 13 . 2 5. 5 283 252	3.64 1.40 .17 .04 4.28 .50 .37 .01

## Driller's log, well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil and red clay Gravel Hard gravel	9 6 13	9 15 28	Limestone (Georgetown) Limestone (Edwards	30 58	58 116

## DE WITT COUNTY

#### CUERO

Population in 1940: 5,474.

Source of information: J. M. Johnson, water superintendent, Dec. 22, 1944.

Ownership: Municipal. Source of supply: 6 wells.

Well 1. Northeast well of four at pump station; drilled in 1911; depth, 735 feet; diameter, 6 inches; flows about 75 gallons a minute; deepwell turbine pump and 10-horsepower electric motor; pump set at 50 feet; yield, 400 gallons a minute; temperature, 82° F.

Well 2. Southeast well of four at pump station; drilled in 1911; depth, 820 feet; diameter, 6 inches; flows about 75 gallons a minute; no pump; temperature, 84° F.

Well 3. Northwest well of four at pump station; drilled in 1915; depth, 1,190 feet; diameter, 6 inches; flows about 90 gallons a minute; no pump; temperature, 88½° F.

Well 4. Southwest well of four at pump station; drilled in 1918 by G. C. Witte; depth, 1,160 feet; diameter, 8 inches; flows about 200 gallons a minute; no pump; temperature, 90° F.

Well 5. On west Morgan Avenue about 300 feet southwest of pump station, drilled by Layne-Texas Co.; depth, 1,173 feet; diameter, 12 to 6 inches; screens at 1,072 to 1,134, and 1,149 to 1,170 feet; flows about 325 gallons a minute; deep-well turbine pump and 12½-horsepower electric motor; pump set at 65 feet; yield about 750 gallons a minute; temperature, 90° F.

Well 6. Near intersection of French and Hunt Streets about 3,000 feet northeast of pump station; drilled in 1943 by Layne-Texas Co.; depth, 1,207 feet; diameter, 12½ to 6½ inches; screens at 1,081 to 1,141 and 1,146 to 1,203 feet; flows about 325 gallons a minute; water level 19 feet above land surface when completed; deep-well turbine pump and 15-horsepower electric motor; pump set at 90 feet; draw-down, 56½ feet while pumping 800 gallons a minute; present yield about 750 gallons a minute; temperature, 91° F.

Pumpage (estimated): Maximum, 1,250,000; minimum, 750,000 gallons a day. Storage: Ground reservoir, 175,000 gallons; elevated tank, 150,000 gallons. Treatment: None.

## Analyses

[Collected Sept. 14, 1939. pH: wells 1, 3, 5, each 8.4; wells 2, 4 each 8.2; well 6, 7.8. Wells 1-5 analyzed by State health department; well 6, by J. H. Rowley]

	Well 1		We	ell 2	We	ell 3
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million	Parts per million	Equiva: lents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (No ₃ ) Dissolved solids Total hardness as CaCO ₃ .	15 .06 9 8 236 393 44 144 .6 -643 56	0.45 .66 10.26 6.44 .92 4.06 .03	13 .05 8 6 252 433 43 137 1.4	0.40 .49 10.96 7.10 .90 3.86 .07	18 .17 10 5 323 470 34 231 .08	0.50 .41 14.05 7.70 .71 6.51 .04
	We	11 4	We	ell 5	We	ell 6
Silica (SiO ₃ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃		0. 45 . 41 16. 39 8. 83 . 23 8. 21 . 03	20 . 05 . 8 . 3 . 339 . 488 . 42 . 231 6 	0.40 .25 14.74 8.00 0.87 6.51 .03	25 8.8 1.4 408 17 565 1.1 334 .4 2 1,070	0. 44 .12 17. 73 . 43 9. 26 0. 02 9. 42 . 02 . 00

# Drillers' logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	· · · · · · · · · · · · · · · · · · ·	We	11 3	·	
Surface materials	32	32	Gumbo and thin rock	19	584
Gravel	8 2	40 42	Gumbo	87	671 686
Clay	68	110	Sand and rock Blue water sand	44	730
Rock and sand	90	200	( (+11mpo	60	790
Sand Clay	26 10	226 236	Red and blue clay	46 35	83 87
Sand	4	240	White and blue clay	144	1, 01
SandShell rock and sand	8	248	Water sand Red clay	40	1,05
Sand rock and white lime Clay and sand Rock and clay	152	400	Red clay	6	1,06
Clay and sand	40 99	440 539	Water sand Red, white and blue clay	33	1, 06 1, 10
Clay	11	550	Water sand and thin rock	65	1, 16
Clay and rock	15	565			Ť
		We	ell 4		
Surface soil and lime	32	32	Gumbo	75	550
Gravel, sand and water	8	40	Sand	15	56
Red clay Sand	8 2	42	Gumbo	19	58
Sand	8 60	50 110	Rock	81	59 67
Clay Sand and sand rock	110	220	GumboSand rock.	15	68
Sand	6	226	Sand rock. Water sand (flow)	44	73
Clay	10	236	Gumbo	106	83
Clay Sand rock Blue shale	8	240 248	Gumbo (now)	35 144	87 1, 01
Sand rock	52	300	Gumbo	40	1, 05
Gumbo	60	360	Gumbo Dark-colored sand	19	1, 07
Sand and lime	40 40	400 440	Gumbo	6 22	1, 080 1, 100
Gumbo Sand rock	35	475	Water sand (flow)	58	1, 16
•	<u>_</u> '	We	11 5	<u>'</u> '-	
Gunfoco gand	10	10	Legge gord	25	900
Surface sand Gravel and boulders	10	20	Loose sandShale	25	800 806
Sand, in hard layers	43	20 63	Shale Loose sand	22	828
	34	97	Shale	17	848
Clay, in hard layers			Cleaning		900 958
Clay, in hard layers Clay Sand with hard layers	20	117 145	Gumbo	55 55	
Clay Sand with hard layers Clay	20 28 31	145 176	Gumbo Tough shale Gumbo	55 47	1,00
Clay Sand with hard layers Clay Sandy clay	20 28 31 40	145 176 216	Gumbo Tough shale Gumbo Loose sand	55 47 21	1, 00 1, 02
Clay Sand with hard layers Clay Sandy clay Shale and rock	20 28 31 40 43	145 176 216 259	Gumbo Tough shale Gumbo Loose sand	55 47 21 23	1, 00 1, 02 1, 04
Ulay Sand with hard layers	20 28 31 40 43 10	145 176 216 259 269	Gumbo	55 47 21 23 6	1, 00: 1, 02: 1, 04: 1, 05:
Ulay Sand with hard layers	20 28 31 40 43 10	145 176 216 259 269 299 423	Gumbo	55 47 21 23 6 19	1, 00: 1, 02: 1, 04: 1, 05: 1, 07:
Ulay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale	20 28 31 40 43 10 30 124	145 176 216 259 269 299 423 435	Gumbo Tough shale Gumbo Loose sand Gumbo Sand and sandy shale Gumbo Hard sand Loose sand	55 47 21 23 6 19 8 43	1, 00: 1, 02: 1, 04: 1, 05: 1, 07: 1, 07: 1, 12:
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale	20 28 31 40 43 10 30 124 12	145 176 216 259 269 299 423 435 445	Gumbo Tough shale Gumbo Loose sand Gumbo Sand and sandy shale Gumbo Hard sand Loose sand	55 47 21 23 6 19 8 43 13	1, 00: 1, 02: 1, 04: 1, 05: 1, 07: 1, 12: 1, 13:
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale	20 28 31 40 43 10 30 124 12 10 53	145 176 216 259 269 299 423 435 445 498	Gumbo Tough shale Gumbo Loose sand Gumbo Sand and sandy shale Gumbo Hard sand Loose sand Hard sand Sand Hard sand	55 47 21 23 19 8 43 13 5	1, 002 1, 023 1, 046 1, 052 1, 073 1, 122 1, 133 1, 146
Clay Sand with hard layers Clay Sandy clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Hard sand Sandy shale Hard sand Sandy shale Hard shale	20 28 31 40 43 10 30 124 12 10 53 17 20	145 176 216 259 269 299 423 435 445 498 515	Gumbo Tough shale Gumbo Loose sand Gumbo Band and sandy shale Hard sand Loose sand Sand Hard sand Soft shale Sand and gravel	55 47 21 23 6 19 8 43 13 5 6	1, 002 1, 024 1, 044 1, 055 1, 077 1, 122 1, 134 1, 134 1, 144
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard sand Sandy shale Hard shale Hard shale Hard shale Hard shale	20 28 31 40 43 10 30 124 12 10 53 17 20 63	145 176 216 259 269 299 423 435 445 498 515 535 598	Gumbo Tough shale Gumbo Loose sand Gumbo Sand and sandy shale Gumbo Hard sand Loose sand Sand Hard sand Soft shale Sand and gravel Sandy shale	55 47 21 23 6 19 8 43 13 5 6 27 79	1, 002 1, 024 1, 044 1, 055 1, 077 1, 122 1, 134 1, 144 1, 173
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard shale Hard shale Hard shale Hard shale Locse sand Hard shale	20 28 31 40 43 10 30 124 12 10 53 17 20 63 59	145 176 216 259 269 299 423 435 445 498 515 535 598	Gumbo Tough shale Gumbo Loose sand Gumbo Band and sandy shale Gumbo Hard sand Loose sand Sand Hard sand Sand Band and gravel Sandy shale Gumbo	55 47 21 23 6 19 8 43 13 5 6	1, 00: 1, 02: 1, 04: 1, 05: 1, 07: 1, 12: 1, 13: 1, 14: 1, 17: 1, 25: 1, 25:
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard shale Hard shale Hard shale Hard shale Locse sand Hard shale	20 28 31 40 43 10 30 124 12 10 53 17 20 63 59 15	145 176 216 259 269 299 423 435 445 498 515 535 598 657 672 677	Gumbo Tough shale Gumbo Loose sand Gumbo Band and sandy shale Gumbo Hard sand Loose sand Sand Hard sand Sand Band and gravel Sandy shale Gumbo	555 47 221 23 6 6 19 8 43 13 5 6 27 79 79 82 21	1, 00: 1, 02: 1, 04: 1, 07: 1, 07: 1, 12: 1, 13: 1, 14: 1, 14: 1, 25: 1, 25: 1, 36: 1, 36:
Clay, in hard layers Clay Sand with hard layers Clay Sand with hard layers Clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard shale Packed sand Gumbo Hard shale Loose sand Hard sand	20 28 31 40 43 10 30 124 12 10 53 17 20 63 59 15	145 176 216 259 269 299 423 435 445 498 515 535 598 657 672 677 683	Gumbo Tough shale Gumbo Loose sand Gumbo Hard sand Loose sand Sand Hard sand Sand Hard sand Sand Hard sand Soft shale Sand and gravel Sandy shale Gumbo Shale Sand, in hard layers Shale	555 47 221 223 6 19 8 43 13 5 6 27 79 5 82 21 14	1, 002 1, 023 1, 044 1, 055 1, 077 1, 127 1, 138 1, 146 1, 173 1, 255 1, 356 1, 366 1, 374
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard shale Packed sand Gumbo Hard shale Loose sand Hard sand Loose sand	20 28 31 40 43 10 30 124 12 10 53 17 20 63 59 15 6	145 176 216 259 269 299 423 435 445 515 535 657 672 677 683 699	Gumbo Tough shale Gumbo Loose sand Gumbo Sand and sandy shale Gumbo Hard sand Loose sand Sand Hard sand Soft shale Sand and gravel Sand yshale Gumbo Shale Sand, In hard layers Shale Sand	555 47 21 23 6 19 8 43 13 5 6 27 79 5 82 21 14 6	1, 002 1, 023 1, 044 1, 052 1, 071 1, 073 1, 122 1, 135 1, 146 1, 173 1, 252 1, 257 1, 339 1, 360 1, 374 1, 374
Clay Sand with hard layers Clay Sandy clay Shale and rock Rock and shale Sand, in hard layers Hard sandy shale Tough shale Hard sand Sandy shale Hard sand Gand Gand Hard shale Hard shale Hard shale Loose sand	20 28 31 40 43 10 30 124 12 10 53 17 20 63 59 15	145 176 216 259 269 299 423 435 445 498 515 535 598 657 672 677 683	Gumbo Tough shale Gumbo Loose sand Gumbo Hard sand Loose sand Sand Hard sand Sand Hard sand Sand Hard sand Soft shale Sand and gravel Sandy shale Gumbo Shale Sand, in hard layers Shale	555 47 221 223 6 19 8 43 13 5 6 27 79 5 82 21 14	1, 002 1, 023 1, 044 1, 055 1, 077 1, 127 1, 138 1, 146 1, 173 1, 255 1, 356 1, 366 1, 374

## Drillers' logs-Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		W	ell 6		
Soil and clay Sand and gravel Sand and boulders Sandy clay and boulders Boulders Sand Sand Sand Sand Sand Sand Sand Sand	17 25 25 7 8 45 45 3 14 67 39 25 29 26 91 16 50 83	8 25 50 72 72 79 87 132 135 149 255 280 309 325 325 335 335 335 539 523 539 523 539 523 539 539 571 715	Shale Soft shale Shale Sandy shale Sandy shale Sand, broken Shale Sticky shale Tough shale Sand Sand Sand Sand Sand Sand Shale Sand Tough shale Sand Shale Sand Shale Sand Shale Sandy clay and gravel Tough shale Sand Sand Shale Sand Shale Sand Sand Sand Sand Sand Sand Sand Sand	111 27 10 522 24 104 422 3 11 12 8 34 52 6 12 13	744 755 788 799 84 877 97 1, 01 1, 03 1, 04 1, 05 1, 18 1, 14 1, 15 1, 16 1, 18 1, 12 1, 12 1, 20 1, 20

#### NORDHEIM

Population in 1940: 411.

Source of information: E. A. Stuermer, city secretary, Dec. 21, 1944.

Ownership: Municipal.

Source of supply: Well at elevated tank, drilled in 1923, depth 1,320 feet; diameter, 8 to 6 inches; casing perforated at 520-530 and 800-815 feet; water level, 180 feet below land surface in April 1939; deep-well turbine pump and 10-horse-power electric motor, pump set at 210 feet; yield, about 235 gallons a minute; temperature, 85° F.

Pumpage (estimated): Maximum, 100,000 gallons; minimum 50,000 gallons a day.

Storage: Ground reservoir, 50,000 gallons; elevated tank, 50,000 gallons.

Number of customers: 137.

Treatment: None.

#### Analysis

## [Collected Dec. 21, 1945. pH is 7.1. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	24 .12 39 7.9 136 11 341	1.95 .65 5.92 .28 5.59	Sulfate (SO ₄ ). Chloride (CI). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ ).	51 76 . 2 0 518 130	1.06 2.14 .01 .00

#### YORKTOWN

Population in 1940: 2,081.

Source of information: A. N. Schwarz, water superintendent, Dec. 21, 1944.

Ownership: Municipal.

Source of supply: Well across street from City hall, drilled in 1939 by Layne-Texas Co., drilled to 2,000 feet and plugged back to 960 feet; diameter, 16 to 8 inches; static water level, 26 feet below land surface when drilled and 33 feet on Dec. 21, 1944, after pump had been shut off 3 hours; deep-well turbine pump and electric motor, pump set at 76 feet; draw down, 83 feet pumping 508 gallons a minute; temperature, 86° F.

Pumpage (estimated): Maximum, 150,000 gallons; minimum, 75,000 gallons a day.

Storage: Ground reservoir, 150,000 gallons; elevated tank, 50,000 gallons.

Number of customers: 369.

Treatment: None.

# Analysis

[Collected Dec. 21, 1944. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO3)	26 .14 47 6.6 155 18 341	2. 35 . 54 6. 72 . 46 5. 59	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	76 102 .1 .5 603 144	1. 58 2. 88 . 01 . 01

## Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Hard clay Sand Packsand Hard sand and boulders Clay Hard sandy clay Packsand Sand Gumbo Hard shale Sand Clay Sand and layers of shale Sand Gumbo Soft blue shale	45 1 24 67 78 2 20 180 119 20 11 23	59 104 105 129 196 274 276 476 595 615 626 649 691 703 786	Hard shale Shale Sand Packsand Shale Sand rock Hard shale Hard shale and packsand Sand rock Hard shale Packsand Hard shale Packsand Hard shale Hard shale and sand rock Rock Hard shale and lime rock Hard shale	48 66 1 21 5 68 37 3	836 896 923 936 1,559 1,560 1,608 1,674 1,675 1,676 1,761 1,769 1,806 1,809 1,876 2,000

#### DIMMIT COUNTY

#### ASHERTON

Population in 1940: 1,538.

Source of information: L. P. Butler, manager, May 11, 1945.

Owner: Central Power & Light Co.

Source of supply: Well at elevated tank; drilled in 1926 by Layne-Texas Co., depth, 640 feet; diameter, 12 inches; cases to 352 feet; deep-well turbine pump and 25-horsepower electric motor; static water level, 52.5 feet below land surface on June 19, 1927; yield, 420 gallons a minute; temperature, 84° F.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, capacity unknown.

Number of customers: 292.

Treatment: None.

# Analysis [Collected May 11, 1945. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	60 15 158	2. 99 1. 23 6. 88 . 51 3. 97	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	200 122 . 8 0 716 211	4. 16 3. 44 . 04 . 00

#### BIG WELLS

Population in 1940: 866.

Source of information: W. Lindenborn, water superintendent, May 11, 1945.

Ownership: Municipal.

Source of supply: Well one block west of elevated tank; drilled in 1937 by Cribbs and Davidson; depth, 1,355 feet; diameter, 10 to 8 inches; cased to 800 feet; deep-well turbine pump and 20-horsepower electric motor; static water level reported 54 feet below land surface on May 11, 1945; yield, 275 gallons a minute; temperature, 94° F.

Pumpage (estimated): Average, 25,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; steel ground reservoir, 25,000 gallons.

Number of customers: 178.

Treatment: None.

Analysis
[Collected May 11, 1945. pH is 8.4. Analyzed by J. H. Rowley]

	- 1.14J 11,	1010. p.z.	5 0111 111diy 20 d 2 y 0 1 21 110 1120		
	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	17 . 42 4. 3 1. 6 223 8. 6 361	0. 21 . 13 9. 71 . 22 5. 92	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	90 85 1. 6 . 2 612 17	1. 87 2. 40 . 08 . 00

## Driller's log, well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Yellow clay. Blue shale. Water sand. Blue shale. Gray shale. Brown shale. Gray shale. Brown shale. Gray shale. Sandy shale (little water). Water sand. Blue shale. Red shale. Blue shale. Brown lignite. Gray sandy shale. Brown shale.	0 140 30 17 15 8 30 50 10 10 66 4 45 20 14 19 17 35 15	20 160 190 207 222 230 260 310 320 330 400 445 479 498 51.5 550 565 580 598	Water sand. Gray shale Brown shale Gray shale Sandy shale Sandy shale Water sand Blue shale Gray sandy shale Brown sandy shale Brown sandy shale Broken sand Sandy shale Brown shale Blue shale Brown shale Gray gumbo Broken water sand Gummy shale Sandy shale Brown shale Brown shale Brown shale	26 18 5 10 5 25 29 26 8 7 30 17 13 18 10 42 55 45 15 60	632 650 655 665 675 670 724 750 758 795 812 825 825 825 950 1,010 1,170
Gray shale	8	606	Brown shale	95	1, 355

#### BRUNDAGE

Population in 1940: 50.

Source of information: W. H. Duncanson, operator, May 11, 1945.

Ownership: Municipal.

Source of supply: Well at elevated tank; drilled by Mr. Wheeler in 1909; depth, 1,170 feet; diameter, 6 inches; cylinder pump and 8-horsepower gasoline engine.

Pumpage (estimated): Average, 4,000 to 5,000 gallons a day.

Storage: Elevated wooden tank, about 10,000 gallons.

Number of customers: 14.

Treatment: None.

## Analysis

[Collected May 11, 1945. pH is 7.8. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	112	1, 80 . 90 4, 87 . 23 5, 29	Sulfate (SO) Chloride (Cl) Floride (F) Nitrate NO ₃ Dissolued solids Total hardness as CaCO ₃	54 47 1.0 .8 454 135	1. 12 1. 33 . 05 . 01

#### CARRIZO SPRINGS

Population in 1940: 2,494.

Source of information: Bert Holmgreen, water superintendent, May 10, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At elevated tank; drilled in 1928 by W. D. Morrison; depth, 322 feet; diameter, 12½ inches; cased to 123 feet; deep-well turbine pump and 30-horsepower electric motor; static water level; 82.4 feet below land surface on March 12, 1930, and reported 105 feet in May 1945; yield, 676 gallons a minute.

Well 2. About 300 feet west of well 1; drilled in 1944 by Elmo Owens; depth, 338 feet; diameter, 16 inches; cased to 123 feet; deep-well submersible pump and 30-horsepower electric motor; static water level reported, 105 feet below land surface in May 1945; yield, 500 gallons a minute with drawdown of 25 feet; temperature, 78° F.

Pumpage: No data.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 60,000 gallons.

Number of customers: 508.

Treatment: None.

## Analysis, well 2

[Collected May 10, 1945. pH is 7.5. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	58 16 117	2.89 1.32 5.08 .61 3.62	Sulfate (SO ₄ ]. Chloride (CI). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as Ca CO ₃	113 136 . 6 4. 0 606 210	2. 35 3. 84 .03 .06

## Driller's log well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil and caliche	20 92 3 3 20	20 112 115 118 138	Carrizo sand Light gray shale Dark gray tight sand Indio sand Midway clay	84 33 15 55 13	222 255 270 325 338

#### CATARINA

Population in 1940: 403.

Source of information: L. D. White, bookkeeper, May 11, 1945.

Owner: Catarina Water Supply Co.

Source of supply: Well at elevated tank; drilled in 1926 by Floyd Trim; depth, 1,334 feet; diameter, 12½ to 10 inches; cased to 1,025 feet; deep-well turbine pump and 50-horsepower electric motor; pump set at 240 feet; static water level, 103 feet below land surface on Dec. 22, 1938; yield, 600 gallons a minute; temperature, 96° F.

Pumpage (estimated): Average, 72,000 gallons a day.

Storage: Standpipe, estimated 175,000 gallons.

Number of customers: 53.

Treatment: None.

## Analysis

## [Collected May 11, 1945. pH is 7.9. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )	18 .30 16 6.9 392 25 240	0.80 .57 17.06 .64 3.93	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	212 378 1.0 1.2 1170 68	4, 41 10, 66 . 05 . 02

## Driller's log

5 25 20 25	5 30 50	Blue shale Sand		755
90 60 35 5 10 20 35 55 15 30 15 50 55 20 40	75 165 250 285 290 295 305 325 360 415 485 495 510 560 615 640 660 700	Sand Black shale Red shale Brown shale Hard sand Sand (fresh water) Red shale. Sand (artesian water) Shale. Sand (artesian water) Shale Sand (artesian water) Red shale. Sand (artesian water) Red shale. Sand Red shale. Sand	15 45 15 25 10 20 40 10 10 40 5 35 10 15 5 15 15	790 8055 850 850 890 959 920 900 970 1,025 1,060 1,000 1,105 1,105 1,115 1,135 1,330 1,331
	5 5 10 20 35 55 15 35 55 15 55 25 25 20	60 250 35 285 5 290 5 290 10 305 20 325 35 360 35 495 35 465 30 495 55 615 55 615 55 640 20 660	Red shale   Sand   Sand (resh water)   Sand (resh water)   Sand (artesian water)   Sand (ar	60         250         Red shale         25           35         285         Sand         10           5         290         Black shale         20           5         295         Red shale         40           10         305         Brown shale         10           20         325         Hard sand         10           35         360         Sand (fresh water)         40           55         415         Red shale         5           15         430         Sand (artesian water)         35           35         466         Shale         10           30         495         Sand (artesian water)         15           50         560         Sand (artesian water)         15           55         615         Red shale         10           25         640         Sand         15           20         660         Red shale         5           20         660         Red shale         5           30         30         30         30           495         Sand         15           50         560         Sand         36 <t< td=""></t<>

## DUVAL COUNTY

#### BENAVIDES

Population in 1940: 3,081.

Source of information: A. C. Canales, city alderman, March 7, 1945.

Ownership: Municipal.

Source of supply: 2 wells, 3 blocks south and 3 blocks west of railway depot.

Well 1. Drilled in 1938 by Gus Delaney; depth, 328 feet; diameter, 8 inches; deep-well submersible turbine pump and 20-horsepower electric motor set at 325 feet; static water level, 215 feet below land surface in December 1942; yield, about 100 gallons a minute; temperature, 81° F.

Well 2. Drilled in 1943 by Layne-Texas Co., Ltd.; depth, 615 feet; diameter, 12¾ to 8½ inches; screens at 209-244, 259-275, 327-356, 450-462 and 483-518 feet; deep-well turbine pump and 10-horsepower electric motor; static water level, 87.9 feet below land surface on Mar. 7, 1945; drawdown, 28 feet pumping 125 gallons a minute during pump test in October 1943; temperature, 80½° F.

Pumpage (estimated): Average, 200,000 gallons a day.

Storage: Ground reservoir, 55,000 gallons; elevated steel tank, 55,000 gallons.

Number of customers: 714.

Treatment: None.

 $\label{eq:Analyses} Analyses $$ [Data for both wells: Collected March 7, 1945. \ pH is 7.8. \ Analyzed by M. L. Begley] $$$ 

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (C1) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCo ₂	.02 42 17 392 12 330 253 345 1.0 25	2. 10 1. 40 17. 05 . 31 5. 41 5. 27 9. 73 . 05 . 40	29 41 17 364 12 297 231 338 8 0 1, 200 172	2. 05 1. 40 15. 81 31 4. 87 4. 81 9. 53 . 04

## Driller's log, well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil	23 17 24 5 14 43 39 25 35	3 20 43 60 84 89 103 146 185 210 245 260 326 355	Clay Sand Clay and sand breaks Clay Sandy clay Sandy clay Broken sand Clay Sand Clay Sand Clay Sand Clay Sand Clay Sand Clay Sand Tough clay Sandy clay Sand Clay Sandy clay Clay Clay Clay Clay Clay Clay Clay C	4 44 13 20 12 21 12 3 19 28 26	369 373 417 430 450 462 483 495 517 545 571 615

#### FREER

Population in 1940: 2,346.

Source of information: J. F. McCalla, engineer, March 6, 1945.

Owner: Freer Utilities Co. (Jarbee, Inc.).

Source of supply: 2 wells on Strip lease, three-quarters of a mile south of post office; 1 well on Moody "B" Salt Dome lease, 1½ miles south of post office; 3 wells on Saxet lease, 1½ miles southwest of post office.

- Well 1 (Strip lease). Drilled in 1937; depth, 450 feet; diameter, 7 inches, top of sand at about 365 feet; cylinder pump and rod line from well 2; 10-horsepower electric motor; static water level, about 165 feet below land surface; yield, 15 gallons a minute; temperature, 88½° F.
- Well 2 (Strip lease). Drilled in 1938; depth, 570 feet; diameter, 7 inches; screen at 450-570 feet; cylinder pump and 10-horsepower electric motor; static water level about 165 feet below land surface; yield, 30 gallons a minute; temperature, 89° F.
- Well 1 (Moody "B" lease). Drilled about 1933; depth, 700 feet; diameter, 7 inches; deep-well turbine pump and 10-horsepower electric motor; static water level, 172.4 feet below land surface on March 6, 1945; yield, 55 gallons a minute; temperature, 81° F.
- Well 1 (Saxet lease). Drilled about 1932; depth, 600-700 feet; diameter, 7 inches; cylinder pump and rod line from oil well power plant, cylinder set at 450 feet; yield, 20 gallons a minute; temperature, 78° F.
- Well 2 (Saxet lease). Drilled about 1938; depth, 200±feet; diameter, 7 inches; cylinder pump and rod line from oil well power plant, cylinder set at 180 feet; static water level, 140.4 feet below land surface on Mar. 6, 1945; yield, 10 gallons a minute.
- Well 3 (Saxet lease). Drilled about 1938; depth, 200±feet; diameter, 7 inches; cylinder pump and rod line from oil well power plant, cylinder set at 175 feet; static water level, 149.1 feet below land surface; yield, 10 gallons a minute.

Pumpage (estimated): Average, 100,000 to 120,000 gallons a day.

Storage: Concrete ground reservoir, 120,000 gallons; wood tank on ground, 40,000 gallons; elevated tank, 75,000 gallons.

Treatment: None.

#### Analyses

[Collected Mar 6, 1945. pH: well 1 (Strip lease), 7.5; well 2 (Strip lease) and well 1 (Saxet lease), 7.4; Well 1 (Woody "B" lease), 7.6. Analyzed by M. L. Begley]

	Well 1 (Strip lease)		Well 2 (Strip lease)	
	Parts per million	Equivialents per million	Parts per million	Equvalents per million
Silico (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCo ₃	52 12 1,660 32 322 7.8 2,520	2.60 .99 72.15 .82 5.28 .16 71.07	11 .79 .52 12 1,650 .32 .326 .6.8 2,510 .2 .3,24,440 .180	2.60 .99 71.92 .82 5.34 .14 70.79 .01

## Analyses—Continued

Well 1 (Moody "B" lease)		(Saxet lease)
er Equivalent per million		Equivalents per million
	24 3 921 6 29 1 353 1 91 1 320 4 . 4 3 7. 0	4. 33 1. 97 40. 00 . 7, 5. 77 3. 99 37. 22 . 00

#### SAN DIEGO

Population in 1940: 2.674.

Source of information: A. R. Martinez, water superintendent, March 6, 1945.

Ownership: Municipal.

Source of supply: 2 wells located 3 blocks south of post office, west of U. S. Highway 59.

Well 1. Drilled in 1937 by Layne-Texas Co.; depth, 509 feet; diameter, 13% to 6% inches; screens at 402-468 and 484-505 feet; deep-well turbine pump and 20-horsepower electric motor; static water level, 90 feet below land surface on March 11, 1937; yield, 225 gallons a minute with draw-down of 90 feet; temperature, 81° F.

Well 2. Drilled in 1936 by Layne-Texas Co.; depth, 565 feet; diameter, 13% to 6% inches; screens at 390-445 and 468-492 feet; deep-well turbine pump and 20-horsepower electric motor; static water level, 98 feet below land surface on March 12, 1937; yield, 235 gallons a minute with draw-down of 125 feet; temperature, 81° F.

Pumpage (estimated): Maximum, 200,000 gallons; minimum, 60,000 gallons; average, 150,000 gallons a day.

Storage: Steel settling tank, 50,000 gallons; elevated tank, 100,000 gallons.

Number of customers: 725.

Treatment: None.

Analyses
[Collected Mar 6, 1945. pH for each well is 7.8. Analyzed by M. L. Begley]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SIO2) Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO3). Sulfate (SO4). Chloride (Cl). Fluoride (F). Nitrate (NO3). Dissolved solids. Total hardness as CaCO3.	29 12 231 8.0 364 94 158	1, 45 99 10, 03 20 5, 97 1, 96 4, 46 04 , 24	22 .05 28 12 248 8.2 370 109 169 .7 15 794 120	1. 40 .99 10. 78 .21 6. 06 2. 27 4. 77 .04 .24

## Drillers' Logs

Well 1			Well 2		
Soil Sand and caliche. Red clay and caliche. Red clay. Sandy clay. Hard caliche Sand Clay Sand Clay Sand	48 110 150 23 18 21 4 36	Depth (feet)  5 65 113 223 373 396 414 435 439 475 501	Soil	30 142 5 16 4 32 81 31 27	Depth (feet)  44 77 21: 23: 23: 23: 35 38 40:
Tough sand	8	509	Clay and sand Sand Hard shale Sandy shale	30 18 87 121	43 45 54 56

## FRIO COUNTY

#### DILLEY

Population in 1940: 1,244.

Source of information: Gertrude Callender, city secretary, May 9, 1945.

Owner: International and Great Northern Railway (operated by City of Dilley). Source of supply: Well one-fourth mile south of Dilley; drilled in 1924; depth, 2,010 feet; diameter, 10 inches; deep-well turbine pump and 15-horsepower electric motor, pump set at 80 feet; flowed when drilled; static water level, reported 40 feet below land surface in April 1945; yield, 240 gallons a minute with draw-down of about 40 feet; temperature, 101° F.

# Average pumpage, in gallons a day

## [Includes water nsed by railroad]

April	April	April	April	April
1940–41	1941–42	1942–43	1943–44	1944–45
66, 700	70, 500	69,000	80, 000	

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 50,000 gallons.

Number of customers: 385.

Treatment: None.

# Analysis of water

## [Collected Apr. 9, 1945. pH is 7.9. Analyzed by State health department]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	27 . 6 31 10 89 280	1, 55 , 82 3, 87 4, 59	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	47 23 . 66 . 4 370 119	0. 98 . 65 . 03 . 01

## Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil	19	19	Shale and boulders	38	952
Rock	3	22	Packsand	14	966
Yellow clay	16	38	Shale and boulders	89	1,055
Lignite	14	52	Gumbo and boulders	81	1, 136
Lignite Packsand	12	64	Sand (water)	30	1, 166
Sandstone	12	76	Shale	10	1, 176
Packsand and boulders	221	297	Hard sand	19	1, 195
Rock	1	298	Shale and boulders	163	1, 358
Fine-grained sand	55	353	Hard sand	30	1,390
Packsand	27	380	Shale	10	1,400
Rock	2	382	Hard sand	30	1,430
Shale and boulders		486	Gumbo and boulders	10	1, 440
Rock	2	488	Shale and boulders	30	1, 470
Blue gumbo	38	526	Hard sand	35	1,505
Rock	2	528	Sandy shale and boulders	62	1, 567
Gumbo	40	568	Shale and boulders	24	1, 591
Gumbo and boulders		581	Sand	9	1,600
Rock	3	584	Shale and boulders	14	1, 614
Gumbo and boulders	46	630	Gumbo	10	1,624
Rock	3	633	Sand (water)	30	1, 654
Gumbo and lime	17	650	Sandy shale	60	1, 714
Packsand		688	Gumbo	69	1, 783
Rock	2	690	Shale	25	1,808
Gumbo and boulders		607	Hard sand	16	1, 824
"Granite"	4	811	Shale	10	1, 834
Shale and boulders		841	Fine-grained sand	16	1,850
Shale		877	Shale	20	1,870
Rock	2	879	Sand (water)	35	1, 905
Sand and boulders	23	902	Lime rock	18	1, 923
Shale and boulders	10	912	Sand (water)	67	1, 990
Rock	2	914	Hard shale	20	2, 010

#### PEARSALL

Population in 1940: 3,164.

Source of information: K. F. Meyer, manager, May 9, 1945.

Owner: Central Power & Light Co.

Source of supply: 2 wells.

Well 1. At power plant one block southwest of railroad depot; drilled in 1926 by Layne-Texas Co.; depth, 1,303 feet (measured depth 1,216 feet in 1940); diameter, 16 to 6 inches; screens at 962-1066 and 1,132-1,241 feet; deep-well turbine pump and 40-horsepower electric motor, pump set at 135 feet; static water level reported, 60 feet below land surface in 1930; yield, 625 gallons a minute; temperature, 92° F.

Well 2. About 50 feet northeast of well 1; drilled in 1942 by Layne-Texas Co., Ltd., depth, 1,302 feet; diameter, 10¾ to 7 inches; screens at 1,135–1,246 and 1,271–1,297 feet; deep-well turbine pump and 30-horsepower electric motor, pump set at 150 feet; static water level, 88 feet below land surface on Oct. 23, 1942; yield, 640 gallons a minute with draw-down of 124 feet; temperature, 93½° F.

Pumpage: No record.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 73,000 gallons.

Number of customers: 583.
Treatment: Hypochlorination.

# Analyses

[Collected: Well 1 Feb. 20, 1943. Analyzed by Texas State Department of Health. Well 2, May 9, 1945, pH is 7.1. Analyzed by J. H. Rowley]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	89 16 28 299 62 28 .4 .4 394	4. 44 1. 32 1. 22 4. 90 1. 29 . 79 . 02 . 01	18 95 17 17 296 62 25 0 391 307	4.74 1.40 .74 4.85 1.29 .71 .03

# Driller's log, Well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Sandy clay	5	5	Rock	1	634
Sand and rock	30	35	Rock Shale and boulders	3	637
Hard rock	1 1	36	Rock	ĭ	638
Sand and hard shale		94	Shale and boulders	5	643
Sand and rock	1 1	95	Rock and shale	15	658
Sand and hard shale		127	Shale and layers of sand	21	679
Sand	21	148	Shale and layers of sand	10	689
Sand and lavare of shale		166	Shale and layers of sand Shale and sand breaks	13	702
Sand and layers of shale Hard rock	1 2	168	Sand.	15	717
Sand and rock	] 3	171	Shale and boulders	28	745
Sand and hard shale		191	Shale and layers of sand		756
Sand and rock	- ž	193	Hard sand	31	787
Sand and hard shale		249	Rock	î	788
Rock		251	Shale and boulders	2	790
Hard shale		266	Hard shale	<u>4</u>	794
Shale and layers of rock	4	270	Rock	i i	795
Hard shale	36	306	Shale sand and boulders	76	871
Sand and boulders		322	Sand and boulders	žĭ	892
Shale and boulders	4	326	Bock	ī	893
Hard shale	11	337	Shale and boulders	9	902
Hard shale and boulders	39	376	Sand and breaks	15	917
Layers of shale and boulders.	8	384	Sand and shale and breaks	23	940
Hard shale		388	Sandy shale		954
Shale and boulders		392	Sand and shale	47	1,001
Hard shale	46	438	Rock		1,002
Rock		440	Shale and boulders	63	1,065
Shale	21	461	Hard shale	16	1,081
Bock and layers of shale	24	485	Hard rock	2	1,083
Rock and layers of shale Rock and shale	1 11	496	Shale and boulders	12 1	1,095
Hard shale	30	526	Hard shale	10	1, 105
Shale and boulders	34	560	Sand (good)		1, 128
Rock	1 2 1	562	Shale	l <u>īi</u> l	1, 139
Hard sand and shale	12	574	Sand and shale	18	1, 157
Shale and boulders		516	Sand	90	1, 247
Hard rock	1	615	Shale	25	1, 272
Shale and boulders	1 10	626	Sand	5	1, 277
Sand and shale		633	Sandy shale	25	1, 302

#### GOLIAD COUNTY

#### GOLIAD

Population in 1940: 1,446.

Source of information: Frank Malech, water superintendent, April 20, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. On river bank; old well; depth, 325 feet; diameter, 8 inches; air lift; yield, 500 gallons a minute; stand-by well; temperature, 75° F.

Well 2. At pump station; drilled in 1936 by Layne-Texas Co.; depth, 461 feet; diameter, 8 to 6 inches; screens at 390-403 and 412-460 feet; deepwell turbine pump and 25-horsepower electric motor, pump set at 156 feet; static water level, 59 feet below land surface; yield, 261 gallons a minute with draw-down of 46 feet on Nov. 6, 1936; present static water level reported, 60 feet and yield, 175 gallons a minute; temperature, 78° F.

Pumpage: Maximum, 200,000 gallons and average, 100,000 gallons a day. Storage: Standpipe, 85,000 gallons; concrete ground reservoir, 80,000 gallons.

Number of customers: 263. Treatment: Chlorination.

· Analyses

[Collected Apr. 20, 1945. pH for each well is 7.4. Analyzed by J. H. Rowley]

	w	ell 1	Well 2		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ ) Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₂ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	8.4 70 20 90 7.0 335 38 102 .6	3. 49 1. 64 3. 93 . 18 5. 49 . 79 2. 88 . 03 . 05	31 112 31 92 9.8 336 35 217 .6 1.2 805 407	5. 59 2. 55 4. 02 . 25 5. 51 . 73 6. 12 . 03 . 02	

## Driller's log, Well 2

:	Thickness (feet)	Depth (feet)	:	Thickness (feet)	Depth (feet)
Soil Caliche Caliche and hard sand Caliche and clay Hard caliche and sand Sand Sand Sand Sand Sand Sand Sand sand Clay Sticky shale Hard sticky shale	2 3 12 13 22 20 25 38 71	2 5 17 30 52 72 97 135 206	Sand Hard sticky shale Sand, broken with shale Sticky shale Sandy lime Sand, broken with shale Sticky shale Sand, broken with shale Sticky shale Sticky shale	15 122 10 22 7 20 5 50 4	221 343 353 375 382 402 407 457 461

#### GONZALES COUNTY

#### GONZALES

Population in 1940: 4,722.

Source of information: Lewis Nix, water superintendent, Dec. 20, 1944.

Ownership: Municipal.

Source of supply: Guadalupe River.

## Average pumpage, in gallons a day, 1944

Feb Ma	ruary rch	257, 800 269, 100	May June July August	429, 200 525, 900	October November	290,000
		1		ì		

Storage: Elevated tank, 100,000 gallons.

Number of customers: 1,163.

Treatment: Coagulation, sedimentation, rapid sand filtration, and prechlorin-

ation and postchlorination.

## Analysis of raw water

[Collected Dec. 20, 1944. pH is 7.8. Analyzed by J. H. Rowley]

	Parts per milliou	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	7. 2 . 19 . 86 . 24 . 76 . 9. 5 . 236	4. 29 1. 97 3. 30 . 24 3. 87	Sulfate (SO ₄ )	47 173 2 4.0 583 313	0. 98 4. 88 . 01 . 06

## NIXON

Population in 1940: 1,835.

Source of information: Mayor, December 22, 1944.

Owner: Terrell Bartlett Co.

Source of supply: Well at elevated tank; drilled in 1929; depth, about 1,400 feet; diameter, 10 inches; centrifugal pump and electric motor; flows, static water level 15 feet above land surface in 1942 and 12.5 feet in 1944; yield, when pumped, about 150 gallons a minute.

Pumpage: Unknown.

Storage: Elevated tank, 75,000 gallons. Number of customers: Unknown.

Treatment: None.

## Analysis

[Collected Dec. 22, 1944. pH is 7.9. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	44 7. 2 29	2. 196 . 592 1. 269 . 148 2. 754	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	30 29 . 5 249 139	0. 625 . 818 . 000 . 008

#### WAELDER

Population in 1940: 1,018.

Source of information: A. E. Bost, water superintendent, Dec. 20, 1944.

Ownership: Municipal.

Source of supply: Well drilled in 1926 by Bost Brothers; depth, 511 feet; deepwell turbine pump and 15-horsepower electric motor, pump set at 210 feet; reported static water level 50 feet below land surface; draw-down, 126 feet after pumping 150 gallons a minute for 3 weeks; temperature, 79° F.

Pumpage: Maximum, 156,000; minimum 72,000; average, 108,000 gallons a day.

Storage: Elevated tank, 60,000 gallons.

Number of customers: 287.

Treatment: None.

## Analysis

[Collected Dec. 20, 1944. pH is 7.9. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	19 .31 49 20 103 16 208	2. 45 1. 64 4. 47 . 41 3. 41	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₁	142 91 .1 1.5 544 204	2. 96 2. 57 . 01 . 02

#### GUADALUPE COUNTY

#### MARION

Population in 1940: 373.

Source of information: E. C. Schulz, city secretary, July 28, 1945.

Ownership: Municipal.

Source of supply: Well 4½ miles north of Marion; drilled in 1933; depth, 50 feet; diameter, 8 inches; deep-well turbine pump and 7½ horsepower electric motor static water level, 3 feet below land surface on July 28, 1944, after pump had been shut off 20 hours; yield, 80 gallons a minute with draw-down of about 2 feet after 1 hour pumping; temperature, 71° F.

Pumpage (estimated): Maximum, 25,000 gallons; minimum, 10,000 gallons;

average 15,000 gallons a day.

Storage: Elevated tank, 50,000 gallons.

Number of customers: 96. Treatment: Chlorination.

## Analysis

[Collected July 28, 1944. pH is 7.3. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	18 . 10 140 15 67 4. 8 353	6. 99 1. 23 2. 90 . 12 5. 79	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	99 80 . 9 67 685 411	2. 06 2. 26 . 05 1. 08

#### SEGUIN

Population in 1940: 7,006.

Source of information: P. B. Roessler, plant superintendent, July 28, 1944.

Ownership:. Municipal.

Source of supply: Guadalupe River.

## Average pumpage, in gallons a day

	1941	1942	1943	1944
January February March April May June July August September October November	477, 143 499,000 586,666 720,000 822,433 1,245,796 1,277,161 917,900 620,090	660, 806 618, 982 794, 000 667, 766 878, 709 1, 258, 533 1, 053, 387 1, 036, 580 839, 800 632, 322 585, 733	584, 741 640, 250 700, 451 902, 500 1, 098, 516 1, 041, 660 1, 102, 516 1, 398, 000 842, 466 705, 870 659, 833	1,090,100

Storage: Elevated tank, 100,000 gallons; standpipe, 290,000 gallons.

Number of customers: 1,900.

Treatment: Coagulation, sedimentation, rapid sand filtration, and chlorination.

#### Analysis of raw water

## [Collected July 28, 1944. pH is 7.9. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium and Potassium (Na+K) Bicarbonate (HCO ₂ )	12 . 15 . 56 . 20 . 18 . 260	2. 80 1. 64 . 77 4. 26	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	22 15 . 2 3.8 280 222	0. 46 . 42 . 01 . 06

#### HAYS COUNTY

## BUDA

Population in 1940: 300.

Source of information: John Howe, co-owner, Jan. 28, 1946.

Owner: John Howe and W. M. Moore.

Source of supply: Well 100 yards east of depot by water tower; drilled in 1941 by Mr. Tyler; depth, 325 feet; diameter, 10 inches; cased to about 200 feet; deep-well Hi-Lift pump and 5-horsepower electric motor; static water level reported 100 feet below land surface when drilled; yield, 22 gallons a minute; temperature, 66° F.

Pumpage (estimated): Average 10,000 gallons a day.

Storage: Elevated tank, 10,000 gallons.

Number of customers: 100.

Treatment: None.

## Analysis

#### [Collected Jan. 28, 1946. pH is 8.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	10 .05 58 33 3 3 3 280	2. 89 2. 71 . 13 . 008 4. 59	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	38 12 1.8 0 301 280	0.79 .34 .09 0

#### KYLE

Population in 1940: 874.

Source of information: J. D. Scott, water superintendent, Nov. 2, 1945.

Ownership: Municipal.

Source of supply: Well on extension of Goforth Street approximately 640 feet east of property line of U. S. Highway 81; drilled in 1939; depth, 595 feet; diameter, 10 inches; deep-well turbine pump and 15-horsepower electric motor; static water level reported 130 feet below land surface in January 1939; yield, 75 gallons a minute with pumping level at 300 feet.

Pumpage (master meter): Minimum, 30,000 gallons; maximum, 60,000 gallons a

Storage: Elevated steel tank, 50,000 gallons.

Number of customers: 208.

Treatment: None.

#### Analysis

#### [Collected November 2, 1945. pH is 7.4. Analyzed by J. H. Rowley]

,	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	1.1 80 45 35	3. 99 3. 70 1. 51 . 43 4. 56	Sulfate (SO ₄ ). Chloride (CI). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	172 46 3. 6 . 2 591 384	3. 58 1. 30 . 19 . 00

#### Driller's log, well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Surface Soil Hard Taylor marl Hard cap rock Austin chalk Eagle Ford shale	5 13 4 160 32	5 18 22 182 214	Buda lime. Del Rio clay Georgetown limestone Edwards limestone	44 52 30 255	258 310 340 595

#### SAN MARCOS

Population in 1940: 6,006.

Source of information: W. N. Joiner, water superintendent.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. Drilled in 1914 by Walter Payne; depth, 115 feet; diameter, 8 inches (in 1941, well was lined with 6½-inch casing); four horizontal centrifugal pumps in 9-foot cistern; capacity of pumps was 1,000, 750, 700, and 400 gallons a minute; total capacity of pumps was 2,900 gallons a minute. Both wells 1 and 2 are connected to this series of pumps. About 1,000 gallons a minute is obtained from well 1, with a draw-down of about 3 feet; static water level near the surface of the pump-house floor.

Well 2. Drilled in 1941 by J. R. Johnson; depth, 115 feet; diamter, 12 inches; connected in conjunction with well 1 to horizontal centrifugal pumps.

## Average pumpage, in gallons a day

	1943	1944		1943	1944
January February March April May June		600, 000 640, 000 680, 000 720, 000 760, 000 800, 000	July August September October November December	350, 000 400, 000 450, 000 490, 000 520, 000 560, 000	850, 000 920, 000

Storage: Concrete reservoir on hill 200 feet above pumping station, 365,000 gallons.

Number of customers: 1,500. Treatment: Chlorination.

## Analysis of wells 1 and 2

## [Collected November 11, 1945. pH is 7.0. Analyzed by J. H. Rowley and C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	12 .05 88 18 7.4 5.8 314	4. 39 1. 48 . 32 . 15 5. 15	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	23 22 4.3 337 294	0. 48 . 62 . 02 . 07

## Driller's log, well 2

,	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Yellow clay Yellow limestone Broken limestone (very cavey).	16 20 18 3	16 36 54 57	Solid limestone Flint boulders Honeycomb, yellow limestone (very porous)	33 6 19	90 96 115

## HIDALGO COUNTY

#### **ALAMO**

Population in 1940: 1944.

Source of information: T. D. Jones, water superintendent, Aug. 6, 1945.

Ownership: Municipal.

Source of supply: Rio Grande, pumping station 2½ blocks south of the post office.

## Average pumpage, in gallons a day

	1941	1942	1943	1944	1945
January February March April May June July August. September October November December	73, 000 55, 000 53, 000 52, 000 36, 000 48, 000 53, 000 48, 000 52, 000 55, 000 50, 000	60, 000 70, 000 82, 000 67, 000 79, 000 50, 000 63, 000 65, 000 73, 000 73, 000	69, 000 90, 000 92, 000 76, 000 64, 000 74, 000 46, 000 52, 000 60, 000 53, 000	71, 000 91, 000 94, 000 98, 000 80, 000 72, 000 81, 000 82, 000 57, 000 93, 000	97, 000 101, 000 152, 000 119, 000 120, 000 116, 000 123, 000

Storage: Elevated tank, 100,000 gallons; concrete ground storage, 100,000 gallons. Number of customers: 450.

Treatment: Coagulation, sedimentation, rapid sand filtration, and chlorination.

Analyses

[Collected Aug. 6, 1945. pH is 7.4 for finished water. Analyzed by J. H. Rowley and C. B. Cibulka]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	84 16 89 6.5 150 192 106 .6 3.2	4. 19 1. 56 3. 85 . 17 2. 46 4. 00 2. 99 . 03 . 05	88 19 87 162 193 107 3.0 648 298	4.39 1.32 3.80 2.66 4.02 3.02

#### DONNA

Population in 1940: 4,712.

Source of information: E. L. Badeaux, water superintendent, Aug. 6, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; pumping station three blocks from post office.

Pumpage (estimated): Maximum, 850,000 gallons a day; minimum, 350,000 gallons a day; average, 650,000 gallons a day.

Storage: Elevated tank, 120,000 gallons; concrete ground reservoir, 100,000 gallons.

Number of customers: 851.

Treatment: Coagulation, sedimentation, rapid sand filtration, and chlorination.

## Analyses

[Collected Aug. 6, 1945. pH is 7.6 for finished water. Analyzed by J. H. Rowley and C. B. Cibulka]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as Ca CO ₃ .	78 19 105 8. 0 125 209 131 2. 0	3. 89 1. 56 4. 56 20 2. 05 4. 35 3. 69 . 11	78 20 115 149 212 130 678 276	3. 89 1. 64 5. 01 2. 45 4. 41 3. 67

## ED COUCH

Population in 1940: 1,758.

Source of information: C. C. Moore, city secretary, Aug. 3, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; pumping plant three blocks west and three blocks

south of post office.

Pumpage (estimated): Average, 125,000 gallons a day.

Storage: Elevated tank, 50,000 gallons.

Number of customers: 285.

Treatment: Coagulation, sedimentation, and chlorination.

## Analyses

[Collected Aug. 3, 1945. pH is 7.5 for finished water. Analyzed by C. B. Cibulka]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicar bonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as Ca CO ₃	.54 94 17 96 7.4 94 262 118 2.0	4.69 1.40 4.16 .19 1.54 5.45 3.33 .11	89 · 16 } 107 105 256 119	4. 44 1. 32 4. 66 1. 72 5. 33 3. 36

#### **EDINBURG**

Population in 1940: 8,718.

Source of information: T. J. Blane, chief operator, August 3, 1945.

Owner: Central Power & Light Co.

Source of supply: Rio Grande, plant two blocks souths and four blocks east of

the courthouse.

## Average pumpage, in gallons a day

	1939	1940	1941	1942	1943	1944	1945
January	402, 000	429,000	421, 000	411,000	428, 000	582, 000	703, 000
February	436,000	539,000	429,000	436,000	594, 000	731,000	691,000
March	544,000	445, 000	423, 000	555, 000	565, 000	721,000	829,000
April	423,000	436, 000	402, 000	542,000	542,000	725,000	674, 000
May	411,000	370,000	328, 000	493,000	586, 000	723, 000	840,000
June	451,000	433, 000	352,000	542,000	705, 000	647,000	968, 000
July	412,000	473, 000	357, 000	342, 000	841,000	709, 000	969, 000
August	374, 000	529, 000	412, 000	416, 000	829, 000	737, 000	
September	346,000	386, 000	338, 000	408, 000	456, 000	487, 000	
October	376, 000	392, 000	329, 000	410, 000	432,000	646,000	
November	409,000	337, 000	373, 000	510,000	468, 000	664,000	
December			347, 000	543,000	491,000	652, 000	
December	400,000	351,000	347,000	ə <del>4</del> ə, 000	491,000	002,000	

Storage: Elevated tank, 70,000 gallons; concrete ground reservoir, 140,000 gallons.

Number of customers: 1,719.

Treatment: Aeration, coagulation, sedimentation, rapid sand filteration, and chlorination.

 $Analyses \\ [Collected Aug. 3, 1945. \ \ \, pH \ \, is 7.4 \ \, for finished water. \ \, Analyzed \ \, by C. B. Cibulka]$ 

	Finish	ed water	Raw water		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	85 16 88 7.4 149	4. 24 1. 32 3. 81 . 19 2. 44	83 17 } 92 161	4. 14 1. 40 3. 98 2. 64 3. 87	
Sulfate (SO ₁ )         Chloride (CI)         Fluoride (F)         Nitrate (NO ₃ )         Dissolved solids         Total-hardness as CaCO ₃	.4 1.8	4.02 3.05 .02 .03	186 106 1. 2 574 277	3.87 2.99	

#### ELSA

Population in 1940: 1,006.

Source of information: Warren Turberville, city secretary, Aug. 3, 1945.

Ownership: Municipal.

Source of supply: Rio Grande, through canal; plant is one-half mile west of post office.

Pumpage (estimated): Maximum, 165,000 gallons a day; minimum, 120,000 gallons a day.

Storage: Elevated tank and open settling tank at ground level, 1,500,000 gallons. Treatment: Coagulation, sedimentation, and chlorination.

## Analyses

[Collected Aug. 3, 1945. pH is 7.3 for finished water. Analyzed by J. H. Rowley]

	Rav	v water	Finished water		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	90 19 86 122 210 119	4. 49 1. 56 3. 76 2. 00 4. 37 3. 36	12 .31 .86 .17 .92 .8.5 .117 .219 .116 .2.2 .1.2 .659 .284	4. 29 1. 40 3. 98 22 1. 92 4. 56 3. 27 . 12 . 02	

#### MCALLEN

Population in 1940: 11,822.

Source of information: W. M. Harris, general manager, August 7, 1945.

Ownership: Municipal.

Source of supply: Rio Grande, pumping plant 14 blocks east and 5 blocks north of post office.

## Average pumpage, in gallons a day

	1939	1940	1941	1942	1943	1944	1945
January February March April May June July August September October November December	881, 000 904, 000 912, 000 1, 060, 000 1, 028, 000 812, 000 773, 000	945, 000 1, 162, 000 1, 024, 000 958, 000 807, 000 896, 000 813, 000 1, 116, 000 801, 000 725, 000 651, 000 671, 000	750, 000 656, 000	905, 000 896, 000 803, 000 1, 019, 000	1, 314, 000 1, 192, 000 1, 247, 000 1, 367, 000 1, 458, 000 1, 588, 000 1, 574, 000 1, 989, 000 1, 068, 000 1, 036, 000	1, 461, 000 1, 652, 000 1, 638, 000 1, 465, 000 1, 632, 000 1, 395, 000 891, 000	1, 440, 000 1, 808, 000 1, 525, 000 1, 855, 000 2, 054, 000 1, 898, 000

Storage: Elevated tank, 150,000 gallons; earthen reservoir, 10,000,000 gallons; concrete ground storage, 210,000 gallons.

Number of customers: 3,000.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, and chlorination.

# Analyses

Collected August 7, 1945. pH is 7.4 for finished water. Analyzed by J. H. Rowley]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	17 88 7.4 134 212 111 .8 2.2	4. 39 1. 40 3. 84 .19 2. 20 4. 41 3. 13 .04	86 18 88 158 190 106 2.5 650 288	4. 29 1. 48 3. 82 2. 60 3. 96 2. 99

#### MERCEDES

Population in 1940: 7,624.

Source of information: E. L. Park, local manager, Aug. 4, 1945.

Owner: Central Power & Light Co.

Source of supply: Rio Grande, pumping plant three blocks east of post office.

# Average pumpage, in gallons a day

	1943	1944	1945		1943	1944	1945
January February March April May June	603, 500 520, 766 469, 300 263, 800	398, 200 413, 400 510, 000 330, 000 404, 000	569, 000 830, 000 774, 000 866, 000 727, 000 764, 000	July	331,000	328, 000 528, 000 413, 000 444, 000 643, 800	423, 000

Storage: Standpipe, 80,000 gallons; concrete ground reservoir, 180,000; concrete ground reservoir, 70,000 gallons.

Number of customers: 1,236.

Treatment: Coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

### Analyses

[Collected Aug. 4, 1945. pH is 7.6 for finished water. Analyzed by C. B. Cibulka and J. H. Rowley]

	Finish	ed water	Raw water		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO2)	.09 83 16 75 9.3 119 190 103 1.8 2.8 602	4.14 1.32 3.25 .24 1.95 3.96 2.90 .09	80 16 89 152 179 103 2, 5 594 266	3. 99 1. 32 3. 86 2. 50 3. 73 2. 90	

#### MISSION

Population in 1940: 5,982.

Source of information: C. E. Langston, water superintendent, Aug. 7, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; pumping plant is four blocks south and two and one-half blocks west of post office.

# Average pumpage, in gallons a day

	1939	1940	1941	1942	1943	1944	1945
January	379, 000	382,000	423, 000	456, 000	523, 000	920, 000	958, 000
February	417,000	444,000	346,000	525, 000	682,000	1, 057, 000	918, 000
March April	544, 000 497, 000	430,000 462,000	330, 000 409, 000	622, 000 571, 000	624, 000 647, 000	891, 000 886, 000	1, 100, 000 841, 000
May	450,000	438, 000	353,000	493,000	769, 000	859, 000	1, 050, 000
June	435,000	499,000	411,000	633,000	730, 000	758, 000	1, 059, 000
July	604,000	426,000	488, 000	418, 000	826, 000	785,000	
August	556,000	651,000	584,000	435, 000	898, 000	812,000	
September		482,000	419,000	398, 000	546,000	524,000	
October	410, 000 363, 000	456,000	387, 000 412, 000	556, 000 680, 000	486, 000 600, 000	670,000 775,000	
November	386,000	333, 000 352, 000	347, 000	640,000	628,000	805, 000	

Storage: Elevated tank, 100,000 gallons; concrete ground reservoir, 50,000 gallons; earthen settling basin, 7,000,000 gallons.

Number of customers: 1,355.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

Analyses
[Collected Aug. 7, 1945. pH is 7.4 for finished water. Analyzed by C. B. Cibulka]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ). Iron (Fe). Calcium (Ca). Magnesium (Mk).	76 15	3. 79 1. 23	84 18	4. 19 1, 48
Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl)	102 6, 5 131 212	4. 45 - 17 2. 15 4. 41 2. 99	82 150 183 104	3. 57 2. 46 3. 81 2. 93
Fluoride (F) Notate (NO3) Dissolved solids Total hardness as CaCO3	.8	.04	2. 5 617 284	.04

#### PHARR

Population in 1940: 4,784.

Source of information: L. M. Flowers, city secretary, Aug. 7, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; pumping plant is three-fourths mile south of post office.

# Average pumpage, in gallons a day

_	1941	1942	1943	1944	1945
January February March April May June July August September October November	- 340,000 - 270,000 - 250,000 - 180,000 - 180,000 - 200,000 - 160,000 - 140,000 - 140,000	250, 000 280, 000 326, 000 337, 000 368, 000 140, 000 140, 000 170, 000 160, 000 220, 000 230, 000	240, 000 340, 000 379, 000 338, 000 332, 000 305, 000 350, 000 346, 000 191, 000 179, 000 204, 000 234, 000	296, 000 300, 000	382, 000 443, 000 568, 000 468, 000 479, 000 492, 000 389, 000

Storage: Elevated tank, 100,000 gallons; concrete ground reservoir, 100,000 gallons.

Number of customers: 1,100.

Treatment: Coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

# Analyses

[Collected Aug. 7, 1945. pH is 7.4 for finished water. Analyzed by C. B. Cibulka and J. H. Rowley]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrade (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	86 16 92 7. 2 139 203 113 . 8 3.0	4. 29 1. 32 4. 00 1. 18 2. 28 4. 23 3. 19 . 04 . 05	93 19 90 174 199 108 3.8 693 310	4. 64 1. 56 3. 91 2. 86 4. 14 3. 05

# SAN JUAN

Population in 1940: 2,264.

Source of information: Mrs. Viola Hewitt, city clerk, Aug. 6, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; plant is one and one-half blocks south of post office. Pumpage (estimated): Maximum, 100,000 gallons a day; average, 80,000 gallons a day.

Storage: Elevated tank, 55,000 gallons; concrete ground storage reservoir, 100,000 gallons.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

# Analyses

[Collected Aug. 6, 1945. pH is 7.7 for finished water. Analyzed by J. H. Rowley]

	Finished water		Raw water	
·	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₂	. 19 92 16 84 7.5 140 198 114 1.8 3.0	4. 59 1. 32 3. 67) . 195 2. 29 4. 12 3. 22 . 09 . 05	92 18 86 178 185 108 .5 664 304	4.59 1.48 3.67 2.92 3.85 3.05

#### WESLACO

Population in 1940: 6,883.

Source of information: V. C. Thompson, city manager, Aug. 6, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; plant is 1½ miles north of post office.

# Average pumpage, in gallons a day

	1942	1943	1944	1945
January February March April May June July August September October November December	597, 000 661, 000 802, 000 765, 000 665, 000 450, 000 425, 000 430, 000 650, 000 790, 000	835, 000 1, 238, 000 894, 000 835, 000 820, 000 724, 000 818, 000 489, 000	980, 000 1, 181, 000 1, 110, 000 1, 187, 000 976, 000 696, 000 605, 000 382, 000 584, 000 632, 000	996, 000

Storage: Elevated concrete tank, 300,000 gallons; concrete ground storage, 85,000 gallons.

Number of customers: 1,300.

Treatment: Coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

# Analyses

[Collected Aug. 6, 1945. pH is 7.6 for finished water. Analyzed by J. H. Rowley and C. B. Cibulka]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ )	84 16 73 7, 7	4. 19 1. 32 3. 17 . 205 1. 95 3. 87	78 17 86 145 178	3. 89 1. 40 3. 75 2. 38 3. 71
Chloride (Cl) Fluoride (F) Nitrate (NO ₃ )	104 1.8	2. 93 . 09 . 04	103	2.90
Dissolved solids	591	.04	595 264	.00

#### JIM HOGG COUNTY

#### HEBBRONVILLE

Population in 1940: 2,400.

Source of information: W. A. Donnelly, owner, Aug. 8, 1945.

Ownership: Hebbronville Utilities, Inc.

Source of supply: 3 wells.

Well 1. One block east and four blocks south of post office; drilled in 1936 by Layne-Texas Co.; depth, 1,198 feet; diameter, 8 to 6 inches; deep-well turbine pump and 20-horsepower electric motor, pump set at 169 feet; well flowing when drilled; static water level, 35 feet below land surface on Aug. 8, 1945; yield, 135 gallons a minute.

Well 2. Six blocks north and five blocks west of post office; drilled in 1939 by Layne-Texas Co.; depth, 992 feet; diameter, 10¾ to 6½ inches; deepwell turbine pump and 15-horsepower electric motor, pump set at 164 feet; static water level 38.1 feet below land surface on Aug. 8, 1945; yield, 50 gallons a minute.

Well 3. Six blocks north and five blocks west of post office; drilled in 1944 by Layne-Texas Co., Ltd., depth, 970 feet; diameter, 12¾ to 5 inches; deep-well turbine pump and 40-horsepower electric motor; pump set at 240 feet; static water level, 39 feet below land surface on Aug. 8, 1945; yield, 200 gallons a minute.

# Average pumpage, in gallons a day

	1944	1945		1944	1945
January February March April May June	51, 422 164, 470 118, 880 96, 053	76, 483 104, 653 118, 777 177, 152 197, 440 119, 845	July August September October November December	119, 738 188, 474 52, 436 59, 497 45, 357 78, 916	

Treatment: None.

# Analysis, well 1

#### [Collected Aug. 8, 1945. pH is 7.7. Analyzed by C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	38 . 17 18 3. 7 342 12 198	0.90 .30 14.86 .31 3.25	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	131 361 12 1,020 60	2.73 10.18 .02 .19

# Drillers' logs

1 7 7 7 31 2	We	Hard shale	1	
7 7 31 2	8	Hard shale	1	
31 2	8		94	46
31 2		Sandy lime. Hard shale, sand and gravel.	16	47
. 2	46	Hard shale, sand and gravel Sandy lime and shale	11 20	48 50
1 47 1	48	Sticky shale	20	50 51
14	62	ShaleSandy shale	45	55
2	64	Sandy shale	25	58
4 2	68 70	Hard shale-sand streaks Shale-	16 14	59 61
25	95	Gumbo	8	62
1 10 1	105	Shale	29	64
164	269	Lime, sandy	15	66
8	200 291	Sand		78 80
11	30 <b>2</b>	Snale	59	86
3	305	Gumbo	51	91
1 3	312	Sand		92 96
8	324	Sand and gravel	14	98
2	326	1 Shale	61	1,04
31	357	Sandy lime		1, 05
10	307	Snare	140	1, 19
7	7	Hard shale	11	56
6	13	Sand and shale		58 59
1 11	20 31	Sand		59 59
5	36	Hard shale	10	60
22	58	Shale	5	61
		Sand and shale		61 62
5	71	Sand	5	62
27	98	Sand and shale	7	63
11		Shale	7	63 64
12		Sand and shale		64
36	165	Sandy shale	57	70
6		Blue shale and shells		73
8		Sand and shale		74 75
5	224	Sand shale and shells	20	77
7		Shale and sand	. 8	78
15		Shale and sand		80 82
23	276	Sand	6	82
3	279	Sandstone		82
1 52 1		Sand, hard		84 87
19		Hard sand and gravel		89
5	379	Haru snaie	3	90
7		Hard sand and gravel		90
13		Sand and shale	12	91° 91°
15	419	Shale, hard layers	1	92
44	463	Sand and shale	3	923
		Hard sand and gravel	3	920 93
ا و ا	484	Shale	3	93
18	510	Sand and shale	14	95
5	515	Hard sand and gravel	19	97
11		snale	21	992
	7 4 8 2 31 10 7 6 7 11 5 22 2 6 5 27 11 8 12 36 6 40 40 8 5 7 7 7 15 23 3 3 2 24 19 5 7 13 6 15 44 14 17 8	## 233  ## 291  ## 293  ## 305  ## 316  ## 316  ## 316  ## 317  ## 317  ## 318  ## 318  ## 319  ## 310  ## 310  ## 310  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 31  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311  ## 311	14	3   305   Gumbo

# Drillers' logs—Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		W	əl1 3		
Soil Caliche Sand Hard caliche Hard caliche and sand Sand, rock and caliche Sand and caliche Sand and caliche Sand and caliche Caliche and sand breaks Clay and hard layers Sand and clay Sand and clay Sand and shells Clay Sand and shells Clay Clay Sand and shells Clay Clay Sand and shells Clay Sand and shells Clay Sand and shells Clay Sand and shells Sand and gravel and caliche Sand and gravel and caliche Sand and gravel Clay Sand sand breaks Hard sand yelay Sand sand breaks Hard sand sand breaks Hard sand sand sand sand sand sand sand san	2 12 8 11 15 3 11 15 36 10 12 76 71 11 14 7 7 15 28 39 10 14 28 14 18	3 5 17 25 37 52 55 66 71 107 117 129 205 216 230 237 252 306 334 373 383 383 383 405 461	Shale and sand breaks	8 15 10 8 13 14 10 24 26 40 10 19 19 5 11 14 26 20 11 8 24 26 12 11 8	56 57,58 58 60 61 63 64 66 69 73 74 76 77 77 77 78 80 82 84 84 84 87 89 91 92 92
Shale	15 11	466 481 492 544	Shale	12	93 95 <b>9</b> 6 97

#### JIM WELLS COUNTY

#### ALICE

Population in 1940: 7,792.

Source of information: R. W. Manning, water superintendent, May 8, 1945.

Ownership: Municipal. Source of supply: 5 wells.

Well 1. Center well at waterworks; drilled in 1928 by Layne-Texas Co.; drilled to 2,068 feet and plugged back to 992 feet; diameter, 16 to 8 inches; screens from 837 to 867 and 945 to 986 feet; submersible turbine pump and 30-horsepower electric motor; static water level, 55.5 feet below land surface on Feb. 28, 1928, 58.5 feet on Jan. 2, 1934, and 110 feet on May 8, 1945; yield, 375 gallons a minute; temperature, 86° F.

Well 2. At city waterworks; drilled in 1938 by Frank Whitson; depth, 622 feet; diameter, 5 inches; deep-well turbine pump and 20-horsepower electric motor; static water level reported 149 feet below land surface in 1945; yield, 110 gallons a minute; temperature, 84½° F.

Well 3. Two blocks northeast of city waterworks; drilled in 1940 by A. E. Fawcett; depth, 647 feet; diameter, 10 inches; submersible turbine pump and electric motor; static water level reported 192 feet below land surface in 1945; yield, 325 gallons a minute; temperature, 82½° F.

- Well 4. At city waterworks; drilled in 1944 by Carl Vickers; depth, 550 feet; diameter, 10 inches, 42 feet of screen at bottom; deep-well turbine pump and 30-horsepower electric motor; static water level reported 152 feet below land surface in 1945; yield, 167 gallons a minute; temperature, 81° F.
- Well 5. On 5th St. between Texas Ave. and South Woodlawn Dr.; drilled in 1945 by Layne-Texas Co., Ltd.; depth, 900 feet; diameter, 16 to 8 inches; static water level reported 150 feet below land surface in 1945; yield, 430 gallons a minute with draw-down of 250 feet after 15 days pumping during test; well not in use.

Pumpage: Maximum, 1,100,000 gallons a day; minimum, 800,000 gallons a day; average, 1,000,000 gallons a day.

Storage: Elevated concrete tank, 85,000 gallons; 4 concrete ground reservoirs, combined capacity, 980,000 gallons.

Number of customers: 2,065.

Treatment: None.

## Analyses

[Collected: wells 1, 2, 3, 4, March 5, 1945; well 5. September 27, 1945. pH; well 1, 7.2; wells 2, 3, 4, 7.4; and well 5, 7.8. Analyzed by J. H. Rowley]

	Well 1		Well 2		Well 3	
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids Total hardness as CaCO ₃ .	23 8.8 333 11 345 196 237 1	1. 15 . 72 14. 49 . 28 5. 65 4. 08 6. 68 . 05 . 18	22 .03 20 8.1 290 9.9 353 117 214 .9 12 876 84	1. 00 . 67 12. 59 . 25 5. 79 2. 44 6. 04 . 05 . 19	18 .05 43 23 398 12 315 165 448 .9 22 1,200 202	2. 15 1. 89 17. 29 . 31 5. 16 3. 44 12. 64 . 05 . 35

	W	ell 4	Well 5		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	.05 42 22 313 11 362 115 325 2.1	2.10 1.81 13.60 .28 5.93 2.39 9.17 .11 .19	18 .04 30 17 317 10 358 128 289 1, 2 12 999 145	1. 50 1. 40 13. 77 . 26 5. 87 2. 66 8. 15 . 06 . 19	

# Driller's log, well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil Clay Sand Clay and gravel Rock Caliche Clay and gravel Clay Rock Clay Sand Clay Sand Clay Sand Clay Sand Gumbo Sand Rock Clay Sand Rock Clay Sand	4 6 15 59 66 43 194 1 9 20 73 3 3 15 1 41 27 4 1 18	4 10 25 84 90 156 109 393 394 403 423 496 535 555 553 554 622 627 645 659	Shale Gumbo Shale and sand Gumbo Sand Sand Gumbo Sand Sand Sand Gumbo Sand Sand Sand Gumbo Sand Sand Sand Sand Gumbo Sand	20 22 92 15 24 88 43 91 59 135 52 46 10 62 111 22 73 14 214 81	69 77 81 83 86 94 99 1, 14 1, 27 1, 32 1, 33 1, 44 1, 55 1, 66 1, 66 1, 98 1, 98 2, 00

#### ORANGE GROVE

Population in 1940: 906.

Source of information: Richard Riedesel, water superintendent, June 2, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. In Orange Grove; drilled in 1936 by Mr. Jackson; depth, 288 feet; diameter, 8 inches; deep-well turbine pump and 5½-horsepower electric motor; static water level reported, 120 feet below land surface in 1945; yield, 75 gallons a minute; temperature, 78½° F.

Well 2. In Orange Grove; drilled in 1942 by Ed Juergens; depth, 520 feet; diameter, 8 inches; 50 feet of screen at bottom; deep-well turbine pump and 7½-horsepower electric motor; static water level reported, 120 feet below land surface in 1945; yield, 100 gallons a minute; temperature, 81½° F.

Pumpage: Average 75,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 50,000 gallons.

Number of customers: 174.

Treatment: None.

# Analyses

[Collected June 2, 1945. pH is 7.6. Analyzed by J. H. Rowley]

	w	ell 1	Well 2		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sullate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	3. 2 70 27 297 389 124 332 1. 2	3. 49 2. 22 12. 93 6. 38 2. 58 9. 36 . 06 . 26	22 2.0 40 17 259 9.3 423 121 188 .6 8.5 890	2.00 1.40 11.28 .24 6.93 2.52 5.30 .03 .14	

#### PREMONT

Population in 1940: 1,080.

Source of information: John W. Duerksen, city secretary, Feb. 8, 1945.

Ownership: Municipal.

Source of supply: Two wells, on city lot at elevated tank in Premont.

Well 1. Drilled in 1939 by Peurifoy and Patterson; depth, 520 feet; diameter, 8 inches; deep-well turbine pump and electric motor; static water level 78.7 feet below land surface on Jan. 2, 1945; pumping level, 86.75 feet; yield, 120 gallons a minute.

Well 2. Drilled in 1945; depth, 506 feet; deep-well turbine pump and electric motor.

Pumpage: Estimated maximum, 125,000 gallons a day; average, 50,000 gallons a day.

Storage: Ground reservoir, 50,000 gallons; elevated tank, 50,000 gallons.

Number of customers: 230.

Treatment: None.

# Analyses

'[Collected well 1, October 14, 1943; well 2, June 1945. pH: well 1, 7.5; well 2, 7.4. Analyzed by J. H. Rowley

[00100000 11011] 000000 11, 1010, 11010 10101	P-21 11 011 19				
	W	Vell 1	Well 2		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	52 19 181 25 284 67 224	2. 60 1. 56 7. 87 . 64 4. 66 1. 39 6. 32 . 03 . 27	41 10 58 21 184 9.0 289 69 222 1.0 21 783 231	2. 89 1. 73 7. 98 23 4. 74 1. 44 6. 26 . 05 . 34	

# Driller's log, well 1

•	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Caliche Caliche with sand streaks	16 234	16 250	Sandy red shaleSand	160 110	410 520

### KARNES COUNTY

#### FALLS CITY

Population in 1940: 500.

Source of information: F. P. Moczygemba, owner, Apr. 17, 1945.

Owner: F. P. Moczygemba.

Source of supply: San Antonio River; centrifugal pump and 20-horsepower electric motor; capacity, 250 gallons a minute.

Pumpage: Maximum, 50,000 gallons; minimum, 5,000 gallons a day; water is not sold for drinking purposes.

Storage: Elevated tank, 40,000 gallons.

Number of customers: 60.

Treatment: None.

863013--50---6

# Analysis of raw water

#### [Collected Apr. 17, 1945. pH is 8.1. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Part per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	13 .81 90 21 19 6.6 270	4. 49 1. 73 . 81 . 17 4. 42	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	59 47 .6 12 428 311	1. 23 1. 33 . 03 . 19

#### GILLETT

Population in 1940: 200.

Source of information: J. M. Golson, owner, Apr. 17, 1945.

Owner: J. M. Golson.

Source of supply: Well just east of Modern Garage; drilled in 1927 by J. M. McCuller; depth, 165 feet; diameter, 4 inches; cylinder pump and ½-horsepower electric motor, cylinder set at 80 feet; static water level, 58 feet below land surface on Apr. 17, 1945; yield, about 3 gallons a minute.

Pumpage: No record.

Storage: Elevated tank, 1,500 gallons.

Number of customers: 19.

Treatment: None.

#### Analysis

# [Collected Apr. 17, 1945. pH is 7.5. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	1. 2 280 73 440 60	13. 98 6. 00 19. 15 1. 53 5. 52	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	891 585 . 6 4. 0 2, 510 999	18. 55 16. 50 . 03 . 06

#### KARNES CITY

Population in 1940: 1,571.

Source of information: Alvin Salge, city clerk, Apr. 17, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At pump station; drilled in 1922; depth, 860 feet; diameter, 12 inches; deep-well turbine pump and 20-horsepower electric motor, pump set at 300 feet; yield, 175 gallons a minute with draw-down of 30 feet; temperature, 92° F.

Well 2. About 100 feet west of well 1; drilled in 1922; depth, 860 feet; diameter, 10 inches; Hi-Lift pump and 7½-horsepower electric motor, pump set at 300 feet; yield, 60 gallons a minute; static water level reported 185 feet below land surface on Mar. 31, 1937.

Pumpage: No record.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 60,000 gallons.

Number of customers: 315.

Treatment: Occasional chlorination.

# Analysis, Well 1

[Collected Apr. 17, 1945. pH is 8.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na)  Potassium (K) Bicarbonate (HCO ₃ )	72 .03 6.7 .6 433 21 292	0. 33 . 05 18. 84 . 54 5. 49	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₂ ) Dissolved solids Total hardness as CaCO ₃	109 420 2. 2 1. 8 1, 230	2, 27 11, 85 , 12 , 03

#### KENEDY

Population in 1940: 2,891.

Source of information: F. E. Moses, water superintendent, Apr. 18, 1945.

Ownership: Municipal. Source of supply: 3 wells.

Well 1. About 400 feet west of pump station; drilled in 1926 by Layne-Texas Co., depth, 402 feet; diameter, 16 inches; 60 feet of screen at bottom; deep-well turbine pump and 20-horsepower electric motor pump set at 140 feet; static water level reported 38 feet below land surface; yield, 345 gallons a minute with draw-down of 57 feet after pumping 24 hours on Mar. 30, 1937; water level, 89 feet; yield, 277 gallons a minute with draw-down of 40 feet in July 1943; present yield, 275 gallons a minute; temperature, 79° F.

Well 2. At pump station, drilled in 1929 by Layne-Texas Co.; depth, 419 feet; diameter, 16 inches; deep-well turbine pump and 20-horsepower electric motor, pump set at 140 feet; static water level reported 38 feet below land surface on Mar. 30, 1937; yield, 277 gallons a minute in July 1943.

Well 3. About 400 feet south of pump station; drilled in 1943 by Layne-Texas Co., Ltd.; depth, 400 feet, diameter, 13% to 6% inches; underreamed and gravel walled; screen from 334 to 396 feet; deep-well turbine pump and 25-horsepower electric motor, pump set at 170 feet; static water level, 90 feet below land surface; yield, 375 gallons a minute with draw-down of 75 feet on July 25, 1943 (wells 1 and 2 pumping when test was made); temperature, 79° F.

Pumpage: Maximum, 675,000 gallons; average, 500,000 gallons a day.

Storage: 2 elevated tanks, 100,000 and 50,000 gallons, ground reservoir, 200,000 gallons.

Number of customers: 644.

Treatment: None.

# Analyses

[Collected Apr. 18, 1945. pH for each well is 7.4. Analyzed by J. H. Rowley]

	Well 1		Well 2		Well 3	
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	. 20 101 15 364 34 381 108 505	5. 04 1. 23 15. 81 . 87 6. 25 2. 25 14. 24 . 06 . 15	48 . 34 . 92 . 12 . 401 . 35 . 400 . 156 . 495 . 1. 0 . 6. 5 . 1, 440 . 279	4. 59 . 99 17. 44 . 90 6. 56 3. 25 13. 96 . 05 . 10	46 .18 68 9.4 341 31 428 112 365 1.0 5.0 1,190 208	3. 39 .77 14. 82 . 79 7. 02 2. 33 10. 29 . 05 . 08

## Drillers' logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		We	111		
Soil Hard sandy clay Sand Clay Sand Clay Clay	10 20 40 20	5 15 35 75 95 135	Gumbo	30 15 125	170 200 215 340 400 402
		We	113		
Soil Clay Sand Clay Sand Hard shale	12 19 39 30	8 20 39 78 108 134	Tough sticky shale	68 17 127 51 3	202 219 346 397 400

#### RUNGE

Population in 1940: 1,001.

Source of information: V. D. Goehring, manager, Apr. 18, 1945.

Owner: Central Power & Light Co.

Source of supply: 2 wells.

Well 1. At pump station; drilled in 1914 by city of Runge; depth, 156 feet; cylinder pump and 15-horsepower electric motor; static water level reported 96 feet below land surface on March 16, 1945; yield, 100 gallons a minute; stand-by well.

Well 2. At elevated tank; drilled in 1935 by Layne-Texas Co., depth, 212 feet; diameter, 10 inches; screen from 156 to 190 feet; deep-well turbine pump and 10-horsepower electric motor, pump set at 169 feet; static water level reported 95 feet below land surface on Mar. 31, 1935; yield, 132 gallons a minute with draw-down of 26 feet after 14 hours' pumping on Aug. 18, 1935; water level, 97, feet; yield, 150 gallons a minute on Mar. 16, 1945.

Pumpage: Average, 26,500 gallons a day.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 49,400 gallons.

Number of customers: 232. Treatment: Chlorination.

# Analysis, well 2

[Collected Apr. 18, 1945. pH is 7.1. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	20 . 19 130 36 98 27 282	6, 49 2, 96 4, 27 , 69 4, 62	Sulfate (SO ₄ )	36 315 1.0 6.7 962 472	0. 75 8. 88 . 05 . 11

# Driller's log, well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil Hard yellow clay Rock Hard clay Clay and boulders	4 62 1 29 20	4 66 67 96 116	Clay Hard clay and boulders Sand Clay	20 18 34 24	136 154 188 212

#### KENDALL COUNTY

### BOERNE

Population in 1940: 1,271.

Source of information: A. C. Richter, manager of utilities, Nov. 2, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. Drilled about 1929; depth, 40 feet; diameter, 10 inches; deep-well turbine pump and 15-horsepower electric motor; static water level, 31 feet below land surface; yield, 178 gallons a minute.

Well 2. About 10 feet from well 1; drilled in 1945 by Lewis Berkman; depth, 40 feet; diameter, 10 inches; deep-well turbine pump and 20-horsepower electric motor; yield, 210 gallons a minute.

Pumpage: Summer average 195,000 gallons; winter average 98,000 gallons.

Storage: Elevated tank. Number of customers: 428. Treatment: Chlorination.

# Analysis, well 1

[Collected Nov. 2, 1945. pH is 6.8. Analyzed by C. B. Cibulka and J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	8.3	5. 19 1. 48 . 36 . 07 4. 92	Sulfate (SO ₄ ) Chloride (Cl) Flouride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	69 20 . 4 10 415 334	1.44 .56 .02 .16

#### KINNEY COUNTY

#### BRACKETTVILLE

Population in 1940: 2,653.

Source of information: O. F. Seargeant, water superintendent, Nov. 2, 1945.

Ownership: U. S. Government and Municipal.

Source of supply: Los Moras Spring at Fort Clark, two blocks south of the city hall.

Pumpage (estimated): 25,000 gallons a day in summer; 13,000 gallons a day in

winter.

Storage: Elevated tank, 75,000 gallons.

Number of customers: 650. Treatment: Chlorination.

#### Analysis

[Collected Nov. 2, 1945. pH is 7.4. Analyzed by C. B. Cibulka and J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	$\begin{array}{c} 11 \\ .08 \\ 66 \\ 6.8 \\ 20 \\ 4.2 \\ 255 \end{array}$	3. 29 . 56 . 86 . 11 4. 18	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	6.7 14 .6 4.8 262 192	0.14 .39 .03 .08

#### KLEBERG COUNTY

#### KINGSVILLE

Population in 1940: 7,782.

Source of information: P. H. Barnhill, June 6, 1945.

Ownership: Municipal. Source of supply: 4 wells.

- Well 2. Drilled in 1935 by the Layne-Texas Co.; depth, 730 feet; diameter, 12 inches; deep-well turbine pump and 30-horsepower electric motor; yield on test, 634 gallons a minute June 20, 1935, and 499 gallons a minute on April 13, 1945; temperature, 85° F.
- Well 3. Drilled in 1939 by A. H. Masarian; depth, 725 feet; diameter, 8 inches; deep-well turbine pump and 15-horsepower electric motor; yield, 148 gallons a minute on April 13, 1945.
- Well 4. Drilled in 1939 by Otto Caster; depth, 725 feet; diameter, 8 inches; deep-well turbine pump and 20-horsepower electric motor; yield, 260 gallons a minute on April 13, 1945.
- Well 5. Drilled in 1943 by the Layne-Texas Co.; depth, 737 feet, diameter, 16 to 8 inches; deep-well turbine pump and 50-horsepower electric motor; static water level, 105 feet below pump base, June 30, 1943; yield, 850 gallons a minute with a pumping level of 148 feet on June 30, 1943, and 774 gallons a minute on April 13, 1945; temperature, 85° F.

# PUBLIC WATER SUPPLIES

# Average pumpage, in gallons a day

	1940	1941	1942	1943	1944
January	615, 000	659, 000	649, 000	966, 000	730, 000
February	707, 000	620, 000	705, 000	1, 080, 000	627, 000
MarchApril	961, 000 965, 000	603, 000 771, 000 660, 000	869, 000 1, 266, 000 1, 451, 000	1, 241, 000 1, 778, 000 2, 046, 000	865, 00 1, 276, 00 1, 465, 00
June	756, 000	632,000	1, 649, 000	1, 604, 000	1, 347, 00
July	1, 173, 000	925,000	1, 240, 000	1, 973, 000	1, 466, 00
August	1, 432, 000	1,110,000	1, 503, 000	1, 849, 000	1, 867, 00
September October	904, 000	1, 035, 000	1, 106, 000	1, 324, 000	1, 242, 00
	792, 000	768, 000	1, 129, 000	1, 329, 000	1, 481, 00
November	629, 000	881, 000	1, 318, 000	945, 000	1, 373, 00
December	563, 000	1, 112, 000	1, 125, 000	653, 000	1, 241, 00

Storage: Ground storage reservoir and elevated tank.

Number of customers: 2,995. Treatment: Periodic chlorination.

# Analyses

[Collected: Wells 2 and 5, Mar. 16, 1945: wells 3 and 4, Feb. 5, 1943. pH: well 2, 8.0; well 3, 8.3; well 4, 8.2; well 5, 7.9. Analyzed by J. H. Rowley]

	w	ell 2	Well 5	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  ron (Fe)  Dalcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )  Sulfate (SO ₄ )  Ohloride (Cl)  Fluoride (F)  Nitrate (NO ₃ )  Dissolved solids  Fotal hardness as CaCO ₃	14 22 8.6 305 14 307 162 242 9.0 956 90	1.10 .71 13.27 .36 5.04 3.37 6.83 .05	17 .03 21 7.5 308 12 315 162 235 .5 9.2 951 84	1. 05 . 62 13. 37 . 31 5. 17 3. 37 6. 63 . 03 . 15
	W	ell 3	W	ell 4
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved Solids Total hardness as CaCO ₃ .	0 20	1, 65 .90 15, 56 4, 38 5, 62 7, 84 .01 .26	11 .02 24 9.6 317 304 163 255 4 12 959 100	1, 20 , 79 13, 78 4, 98 3, 39 7, 19 , 02 , 19

# Driller's log, well 5

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Top soil White clay Fine-grained sand White clay Shale and layers of fine sand. Hard shale Fine-grained sand Soft shale Sand Shale Shale	4 50	6 32 36 86 139 159 193 232 247 254	Fine-grained sand	32 16 12 82 38 23 10 7 108 155	286 302 314 396 434 457 467 474 582 737

## LA SALLE COUNTY

#### COTULLA

Population in 1940: 3,633.

Source of information: John Wildenthal, water superintendent, May 11, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At elevated tank; drilled in 1916 by F. M. Burkett; depth, 2,300 feet; diameter, 6 inches; screen from 2,188 to 2,300 feet; reported natural flow, 240 gallons a minute; centrifugal pump; yield about 400 gallons a minute; temperature, 104° F.

Well 2. Located about 1 mile northwest of well 1; drilled in 1940 to a depth of 6,366 feet and plugged back to 2,483 feet; diameter, 10¾ inches; cemented from 2,483 to surface, gun perforated from 2,100 to 2,483 feet; natural flow, 165 gallons a minute 3 feet above land surface on Oct. 22, 1942; reported yield, with test pump, 516 gallons a minute with drawdown of 98 feet below land surface (total draw-down about 150 feet); temperature, 107° F.

Pumpage (estimated): Maximum, 400,000 gallons; minimum, 150,000 gallons; average, about 250,000 to 300,000 gallons a day.

Storage: Elevated tank, 100,000 gallons, concrete ground reservoir, 125,000 gallons.

Number of customers: 566.

Treatment: None.

# Analyses

[Collected: well 1, September 15, 1942; well 2, Oct. 21, 1942. pH: well 1, 8, 4; well 2, 8, 3. Analyzed by: W. W. Hastings]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe). Calcium (Ca) Magnesium (Mg). Sodium (Na) Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl) Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	2. 2 1. 1 214 341 79 81 . 1	0.11 .09 9.32 5.59 1.64 2.28 .01	19 .04 2.3 1.6 230 380 84 78 .7 0 614 12	0.11 .13 9.98 6.23 1.75 2.20 .04

# Drillers' logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		We	11 1		
Fravel and clay	20	20	Blue mud	41	1, 0
Soft sandstone	41	:61	Sandstone (flowing water)	55	1, 10
Blue sandstone (water)	55	116	Blue mud and shale	65	1, 17
Hard sandstone with boulders.	12	128	Hard sandstone	13 22	1, 18 1, 20
Soft sandstone (water)	20	148	Hard rock	4	1 2
Shale	57	205	Sandstone	16	1 2
Soft sandstone	15	220	Blue mud and shale	43	1.2
Blue shale Sandstone (water)	24 36	244 280	Hard sandstone	13 19	1, 2
Rlue mud	35	315	Blue mud, shale and hard	126	1, 3 1, 4
Blue mud Bandstone (water)	15	330	rock.	1 120	•
Dark-colored mud	43	373	Sandstone	35	1, 4
Soft sandstone	14	387	Blue mud	26	1, 4
Light-blue mud Dark-colored mud	22 28	409 437	Sandstone	10	1, 4 1, 5
Blue mud	13	450	Gray mud Hard sandstone Blue mud	19	1, 5
Soft sand	16	466	Blue mud	7	1, 5
Brown blue and white mud	172	638	Sandstone	27	1. 5
and and shale	9	647	Pink mud	13	1, 5
Light-blue and brown mud	39	686 688	Sandstone Brown mud	28	1,6
Hard rock Brown mud	23	711	Hard sandstone	40	1, 6 1, 6
Hard sandstone	9	720	Mud. snale and pard rock	89	1, 6 1, 7
Oark-colored mud	27	747	Sandstone (flowing water)	35	1, 7
Hard rock Dark-colored mud	6	753	Hard sandstone	100	1, 8
Dark-colored mud	6 16	759	Gray mud Sand (water) Blue mud	6 45	1, 9
Hard rock Dark-colored mud	13	775 788	Rhie mid	5	1, 9 1, 9
Soft sandstone	27	815	Hard sandstone		1, 9
Black shale	5	820	Hard sandstone	13	1 9
Lignite	4	824	Hard shaleSandstone (water)	6	1, 9
Mud, dark-colored shale and	86	910	Sandstone (water)	39	2, 0 2, 0 2, 1 2, 1
rock. Black shale	4	914	Dark-colored shale Hard sandstone	51 40	2, 0
Coal	1 1	915	Soft sandstone (water)	111	2, 1
Coal Sandstone (water) Blue mud	25	940	Dark-colored shale	26	2, 1 2, 1 2, 1 2, 1
Blue mud	13	953	Hard sandstone	11	2, 1
Sandstone	20	973	Blue shale Sandstone (flowing water)	22	2, 1
Blue mud Sand	29 8	1002 1010	Sandstone (nowing water)		2, 3
327	<u>.                                    </u>	We	oll 2		
Rotary floor	16	16	Hard sand	44	1.0
Hard rock	98	114	Shale with streaks of sand	194	1, 0 1, 2 1, 3
Jnreported Broken sand	19	133	Medium hard sand	20	1,3
Broken sand	192	325	Shale with hard sand streaks	50	1, 8
Hard sand and broken shale Sticky shale	240 36	565 601	Hard broken sand Shale with some sand	68 492	1, 4 1, 9
Hard sand	007	608	Sticky shale with streaks of	102	1, :
tard sand sandy shale Hard sand sandy shale	56	664	hard sand	44	1, 9
Hard sand	3	667	hard sand Broken sand	29	1,9
Sandy shale	23	690	Hard sand lime streaks	35	2, (
Tara sama	8 8	698 706	Hard sand	79 105	2, 1 2, 2
Sticky shale Hard sand	48	706 754	Soft sandBroken sand	60	2, 2
shale with streaks of lignite	31	785	Hard sand	15	2, 2 2, 2 2, 3
Soft sand Shale with streaks of hard sand	24	809	Shale with hard sand streaks.	60	2,3
Shale with streaks of hard	1 0-	00-	Hard sand	70	2, 4
sand Sand	86	695	Soft sand	57 58	2,
	11	906	Shale	650	2, 5 3, 1
ticky chala with streets of					
Sticky shale with streaks of	56	962	Hard sand	30	3.2
stricky shale with streaks of sand	56 22 66	962 984 1,050	Hard sand Shale Hard sand Soft sand Shale	30 2 280	3, 3 3, 3 3, 4

#### FOWLERTON

Population in 1940: 600.

Source of information: O. W. Herman, storekeeper, May 11, 1945.

Ownership: Municipal.

Source of supply: Well in northwest part of town; drilled in 1912 by Fowlerton Bros.; depth about 1,700 feet; diameter, 8 inches; natural flow into mains;

quantity, pressure, and temperature unknown.

Pumpage: No record.

Storage: None; flows directly into main.

Number of customers: 50.

Treatment: None.

## Analysis

[Collected May 11, 1945. pH is 8.0. Analyzed by J. H. Rowley]

·	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	37 .63 3.1 .7 933 13 1,530	0. 15 . 06 40. 58 . 33 24. 97	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolves solids Total hardness as CaCO ₃	192 422 4. 4 1. 0 2, 360 10	4.00 11.90 .23 .02

#### LIVE OAK COUNTY

#### GEORGE WEST

Population in 1940: 1,250.

Source of information: Walter E. Lamm, co-owner, Apr. 19, 1945.

Owner: George West Utilities Co.

Source of supply: Well at ice plant; drilled in 1914; depth, 500 feet; diameter, 10 inches; deep-well turbine pump and 10-horsepower electric motor; static water level, 38.4 feet below land surface in August 1934; yield, 235 gallons a minute with draw-down of 45 feet after several hours pumping; temperature, 81° F.

Pumpage: Maximum, 100,000 gallons; average, 60,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 55,000 gallons.

Number of customers: 150.

Treatment: None.

#### Analysis

[Collected Apr. 19, 1945. pH is 7.4. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	30 . 56 74 20 300 55 343	3. 69 1. 64 13. 06 1. 41 5. 62	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	316 267 1.4 0 1,230 266	6. 58 7. 53 . 07 . 00

#### THREE RIVERS

Population in 1940: 1,337.

Source of information: Bryan Boyd, city secretary, Apr. 19, 1945.

Ownership: Municipal.

Source of supply: Frio River (part of supply is obtained from two dug wells on

river bank).

Pumpage: Maximum, 150,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 550,000

gallons.

Number of customers: 350. Treatment: Chlorination.

# Analyses

[Collected Apr. 19, 1945. pH: dug well, 7.0; Frio River, 7.7. Analyzed by J. H. Rowley]

	Du	g well	Frio River (raw water)		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )  Sulfate (SO ₄ )  Chloride (Cl)  Fluoride (F)  Nitrate (NO ₃ )  Dissolved solids  Total hardness as CaCO ₃	226 17 106 33 481 130 266 23,0	11. 28 1. 40 4. 63 84 7. 88 2. 71 7. 50 .01	14, 48 69 11 88 227 66 108 . 2 1.8 481 217	3. 44 . 90 3. 84 3. 77 1. 37 3. 06 . 01	

#### MAVERICK COUNTY

#### EAGLE PASS

Population in 1940: 6,459.

Source of information: J. A. Slaughter, local manager, May 10, 1945.

Owner: Central Power and Light Co.

Source of supply: Rio Grande through 5 dug wells in river bed.

Pumpage: Maximum, 1,300,000 gallons; minimum, 600,000 gallons; average,

800,000 to 900,000 gallons a day.

Storage: Elevated tank, 20,000 gallons; concrete ground reservoir, 500,000

gallons.

Number of customers: 1,352. Treatment: Chlorination.

### Analysis of composite sample from five wells

[Collected May 10, 1945. pH is 7.3. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	18 . 71 116 32 174 11 219	5. 79 2. 63 7. 56 . 28 3. 59	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	272 245 1. 2 2. 2 980 421	5. 66 6. 91 . 06 . 04

### MEDINA COUNTY

#### DEVINE

Population in 1940: 1,398.

Source of information: R. L. Connely, water superintendent, Feb. 19, 1946.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. Located 3 blocks north and 2 blocks east of post office; drilled about 1938; depth, 350 feet; deep-well turbine pump and 10-horsepower electric motor, pump set at 190 feet; yield, 125 gallons a minute.

Well 2. Drilled about 1928; depth, 250 feet; deep-well turbine pump and 10-horsepower electric motor, pump set at 190 feet; yield, 125 gallons a minute.

Pumpage: Maximum, 100,000 gallons; minimum, 50,000 gallons; average, 70,000 gallons a day.

Storage: Elevated tank, 50,000; concrete ground reservoir, 50,000 gallons.

Number of customers: 325.

Treatment: None.

### Analyses

[Collected Feb. 19, 1946. pH: well 1, 7.6; well 2, 7.7. Analyzed by C. B. Cibulka]

	w	ell 1	Well 2		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe).  Calcium (Ca).  Magnesium (Mg).  Sodium (Na).  Potassium (K).  Bicarbonate (HCO ₃ ).  Sulfate (SO ₄ ).  Chloride (Cl).  Fluoride (F).  Nitrate (NO ₃ ).  Dissolved solids.  Total hardness as CaCO ₂ .	70 16 111 15 388 76 71 . 6 2.5	3. 49 1. 32 4. 82 .38 6. 36 1. 58 2. 00 .03 .04	13 2, 5 63 15 98 10 346 77 56 . 6 0 503 218	3.1. 1.2: 4.2: 2: 5.6: 1.6: 1.5: .0:	

#### HONDO

Population in 1940: 2,500.

Source of information: Homer Wilson, water superintendent, Nov. 2, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At elevated tank, drilled in 1900; depth, 1,450 feet; diameter, 8 to 6 inches; cased to 1,400 feet; deep-well turbine pump and 40-horsepower electric motor; static water level, 165 feet below land surface; yield, 400 gallons a minute with draw-down of 75 feet.

Well 2. About 50 feet from well 1; drilled in 1910; depth, 1,460 feet; diameter, 10 to 6 inches; deep-well turbine pump and 40-horsepower electric motor; yield, 500 gallons a minute with draw-down of 55 feet.

Pumpage: Summer peak, 1,080,000; winter average, 360,000 gallons.

Storage: Elevated tank, 50,000 gallons.

Treatment: None.

Number of customers: 800.

# Analyses

[Collected Nov. 2, 1945. pH: Well 1, 7.0; well 2, 7.2. Analyzed by J. H. Rowley and C. B. Cibulka]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃ .	$\begin{array}{c} 66 \\ 16 \\ 4.8 \\ 3.4 \\ 244 \\ 16 \\ 18 \\ .2 \end{array}$	3. 29 1. 32 21 09 4. 00 .33 .51 .01	13 .05 64 16 7.1 4.4 255 14 14 .2 3.5 262 226	3. 19 1. 32 . 31 . 11 4. 18 . 29 . 39 . 01 . 06

### NUECES COUNTY

#### AGUA DULCE

Population in 1940: 750.

Source of information: Frank Whitson, well driller, July 18, 1945.

Ownership: Municipal.

Source of supply: Well at elevated tank; drilled in 1940 by Frank Whitson; depth, 596 feet; diameter, 8 to 4 inches; 40 feet of 4-inch screen; deep-well turbine pump and electric motor; static water level reported 80 feet below land surface; yield, 30 gallons a minute.

Pumpage (estimated): Summer, 35,000 gallons a day; winter, 30,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; ground reservoir, 50,000 gallons.

Number of customers: 110.

Treatment: Aeration, sedimentation, filtration, and chlorination.

# Analysis

# [Collected July 18, 1945. pH is 8.0. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	28 12 511	1.40 .99 22.20 .61 4.89	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	231 535 .4 1,520 150	4.81 15.09 .02 .39

#### Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Shale	312	312	Sand	25	445
Sand	15	327	Shale	30	475
Shale	30	357	Sand	65	540
Sand	18	375	Shale	18	558
Shale	45	420	Sand	38	596

#### BISHOP

Population in 1940: 1,329.

Source of information: W. L. Johnson, city secretary, July 1945.

Ownership: Municipal.

Source of supply: 2 wells at elevated tank in Bishop.

Well 1. Drilled about 1910; depth about 760 feet; diameter, 6 inches; pumped by air; yield, 75 gallons a minute.

Weil 2. About 300 feet from well 1; drilled in 1939 by Layne-Texas Co.; depth, 782 feet; diameter, 85% to 5½ inches; screen from 715 to 781 feet; deep-well turbine pump driven by 5-horsepower electric motor, pump lowered from 90 to 130 feet in 1941; static water level, 28 feet below land surface on June 30, 1939, and 36 feet below land surface in 1941; yield, 42 gallons a minute with draw-down of 38 feet on June 30, 1939; present yield, 100 gallons a minute.

Pumpage: Summer, 125,000 gallons a day; winter, 72,000 gallons a day. Storage: Elevated tank, 50,000 gallons; ground reservoir, 65,000 gallons.

Number of customers: 355. Treatment: Hypochlorination.

# Analyses [Collected July 1945. pH: Well 1, 8.0; well 2, 7.9. Analyzed by J. H. Rowley]

•	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₂ ) Dissolved solids Total hardness as CaCO ₃	19 6.8 358 17 311 192 290 1.0	0. 95 . 56 15. 58 . 43 3 5. 11 4. 00 8. 18 . 05 . 18	8.5 .03 18 6.2 368 313 188 288 .8 11 1,040 70	0. 90 . 51 15. 98 5. 14 3. 91 8. 12 . 04 . 18

#### Driller's log well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Clay	4 9 10 288 9 92 33 30 12	12 16 25 35 323 332 424 457 487 499 534 538	Sand, hard layers Sand Clay Sand Clay Shale and clay Shale and sand streaks Shale Shale and sand Shale and sand Brown sand Brown hard sand	3 11 28 14 10 22 22 22 22 22 21 22 22 22 22	541 552 580 594 604 626 648 670 691 713 758

# CORPUS CHRISTI

Population in 1940: 57,301.

Source of information: John Cunningham, water superintendent, July 1945.

Ownership: Municipal.

Source of supply: Storage reservoir on Nueces River near Mathis; original capacity, 66,000 acre-feet. Water fed to low-water reservoir at Calallen by Nueces River. Filtration plant at Calallen; reservoir capacity, 175,000,000 gallons. Water pumped 16 miles to Corpus Christi; pumping capacity, 35 to 40 million gallons a day. Also supplies Naval Bases, Clarkwood, and Nueces Water Improvement District 1.

Storage: Elevated tank, 750,000 gallons; two ground reservoirs, 10,000,000 gallons each.

Treatment: Coagulation, sedimentation, aeration, rapid sand filtration, prechlorination and postchlorination.

# Average pumpage, in gallons a day

	1937	1938	1939	1940
January	3, 138, 710	3, 317, 094	3, 901, 613	4, 681, 613
February		4, 564, 286	4, 645, 178	5, 283, 965
March		4, 300, 000	4, 129, 032	4, 836, 290
April		4, 866, 666	5, 079, 833	5, 515, 000
May		4, 387, 096	5, 173, 870	5, 442, 741
June		5, 346, 666	4, 967, 833	5, 484, 433
July		5, 302, 903	5, 673, 645 6, 300, 870	5, 824, 709
August		5, 970, 161 4, 259, 666	5, 515, 666	7, 165, 483 7, 106, 666
September	4, 256, 935	4, 369, 516	4,740,806	5, 731, 290
November		4, 441, 833	5, 432, 833	5, 398, 000
December	3, 670, 323	4, 101, 935	4, 789, 838	4, 895, 161
	0,0,0,020	1, 101, 000	1,100,000	2,000,101
	1941	1942	1943	1944
January	5, 110, 000	7, 162, 096	10, 268, 870	10, 707, 967
February		8, 060, 714	11, 816, 785	12, 219, 896
March		7, 094, 193	10, 172, 903	10, 693, 258
April		8, 844, 333	11, 963, 000	13, 125, 266
May		8, 533, 225	12, 190, 322	14, 763, 064
June	7,079,333	10, 827, 166	11, 699, 666	18, 243, 766
July	7, 806, 451	9, 550, 483	11, 467, 741	19, 885, 193
August	9, 952, 903	11, 185, 806	12, 419, 032	22, 545, 000
September	10, 445, 666	11, 116, 500	11, 518, 333	17, 702, 933
	7, 577, 096	10, 874, 193	9, 753, 548	16, 357, 741
October				
October November December	7, 672, 833 6, 870, 000	10, 879, 677 10, 190, 967	10, 394, 666 10, 601, 290	71, 636, 033 14, 455, 967

# Analyses

[Collected July 1945. pH: Raw water, 7.8; finished water, 7.3. Analyzed by J. H. Rowley]

	Raw water		Finish	ed water
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	56 6. 5 56 9. 0 180 43 74	2. 80 . 53 2. 42 . 23 2. 95 . 90 2. 09 . 03 . 01	13 .05 39 7.4 59 9.6 91 66 88 .4 0 342 128	1.95 .61 2.55 .25 1.49 1.37 2.48 .02

#### PORT ARANSAS

Population in 1940: 495.

Source of information: Boone Walker, manager, July 17, 1945.

Owner: Mustang Island Industries.

Source of supply: 36 wells, all 2-inch driven-well points, about 18 feet deep; wells are in 4 batteries of 9 wells each and each battery of wells is pumped by direct-suction pumps.

Pumpage: Unknown.

Storage: 3 wooden elevated tanks, about 3,000 gallons each. Number of customers: About 300 during summer months.

Treatment: Hypochlorination.

# Analysis of composite sample

[Collected July 17, 1945. pH is 7.8. Analyzed by J. H. Rowley]

Silica (SiO ₂ )	Parts per million 4.0 1.1 106 69 498 44 304	Equiva- lents per million 5. 29 5. 67 21. 66 1. 13 4. 98	Sulfate (SO ₄ )	Parts per million 123 925 .6 5,5 1,930 548	Equiva- lents per million  2.56 26.09 .03 .09
----------------------------	------------------------------------------------------------------------	-------------------------------------------------------------------------------	----------------------------	--------------------------------------------------------------------	-----------------------------------------------------

#### ROBSTOWN

Population in 1940: 6,780.

Source of information: W. B. Messer, manager, July 18, 1945.

Owner: Nueces County Water Improvement District 3.

Source of supply: Nucces River: diversion plant about 5 miles north of Robstown; water fed by canal to filtration plant at Robstown.

Storage: Elevated tank, 100,000 gallons; ground reservoir, 7,000,000 gallons; treated ground storage, 150,000 gallons.

Number of customers: 1,960.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, prechlorination, and postchlorination.

# Average pumpage, in gallons a day

	1943	1944	1945		1943	1944	1945
January Fe bruary March April May June	405, 000 432, 000 535, 000 648, 000 678, 000 464, 000	462,000 552,000 597,000 638,000 546,000 585,000	583,000 623,000 700,000 646,000 741,000 723,000	July August September October November December	680,000 774,000 580,000 431,000 453,000 431,000	776, 000 739, 000 567, 000 517, 000 543, 000 497, 000	

# Analyses

[Collection: July 1945. pH: Raw water, 7.9; finished water, 7.7. Analyzed by J. H. Rowley]

,	Raw water		Finished water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	. 15 62 7. 2 45 9. 6 177 44 73	3. 09 . 59 1. 97 . 25 2. 90 . 92 2. 06 . 02 . 00	12 1.15 67 7.6 47 9.5 172 61 76 0 379 198	3.34 62 2.05 2.44 2.82 1.27 2.14 .02

#### REFUGIO COUNTY

#### AUSTWELL

Population in 1940: 301.

Source of information: Mrs. Marie Bailey, city secretary, July 1945.

Ownership: Municipal.

Source of supply: Well, drilled in 1938 by C. E. Enton; depth, 361 feet; diameter, 6 inches; deep-well pump and electric motor; double-action cylinder; yield, 20 to 30 gallons a minute.

Storage: 13,500 gallons. Number of customers: 60.

Treatment: None.

# Analysis

[Collected July 1945. pH is 7.8. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	12 .98 36 18 248 9.9 381	1. 80 1. 48 10. 80 . 25 6. 25	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	89 220 . 6 0 833 164	1. 85 6. 20 . 03 . 00

# Driller's log, well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Surface soil	4 66 5 49 22 62 10 17	4 70 75 124 146 208 218 235	Sand streaked, fine-grained and coarse-grained	10 19 14 26 9 8 40	245 264 278 304 313 321 361

863013-50-7

#### REFUGIO

Population in 1940: 4,077.

Source of information: I. C. Williams, water superintendent, July 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. About a quarter of a mile northeast of the courthouse in Refugio; drilled in 1930 by Layne-Texas Co., original depth, 960 feet; underreamed and new screen installed in 1943; depth, 886 feet; diameter, 10 to 5½ inches; deep-well turbine pump and 30-horsepower electric motor, pump set at 119 feet; flowing well; pump yield, 330 gallons a minute with pumping level at 111 feet below land surface, after being repaired in 1943.

Well 2. About 140 feet from well 1; drilled in 1937 by Layne-Texas Co., depth, 875 feet; diameter, 13% to 6% inches; deep-well turbine pump and 8-cylinder gasoline engine, pump set 100 feet; flowing well; pump yield, 660 gallons a minute with pumping level at 83 feet below land surface.

Pumpage: Summer, 400,000 gallons a day; winter, 200,000 gallons a day. Storage: Elevated tank, 100,000 gallons; ground reservoir, 50,000 gallons.

Number of customers: 715. Treatment: Chlorination.

# Analyses

[Collected July 1945. pH: Well 1, 8.1; well 2, 8.5. Analyzed by J. H. Rowley]

	w	ell 1	Well 2		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )  Sulfate (SO ₄ )  Chloride (Cl)  Fluoride (F)  Nitrate (NO ₃ )  Dissolved solids.  Total hardness as CaCO ₃	5.8 2.7 371 11 411 57 315 1.4 .8	0. 29 22 16. 11 28 6. 75 1. 19 8. 88 . 07	16 .04 .59 2.7 365 7.2 418 53 302 1.4 .8 963	0.29 .22 15.88 .18 6.87 1.10 8.52 .07	

# Driller's log; well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Clay Sand Shale	8 129 122 38 8 1 18 8 7 33 122 57 16 11 25 19 8 20 22	58 66 195 207 245 253 3254 272 280 332 339 405 416 441 460 488 488 488 510 544	Sand, hard Shale Sand Shale and boulders Sand Rock Sand Rock Sand Rock Shale, sticky Sand, good Shale Sand, shale Sand, shale Sand, shale Sand, shale Sand	9 83 28 10 1 7 3 12 2 61 24 10 10 2 16 20 16	579 588 671 699 710 717 7720 732 734 795 819 819 829 839 841 841 857 898 898

#### WOODSBORO

Population in 1940: 1,426.

Source of information: Edward Mason, water superintendent, July 1945.

Ownership: Municipal.

Source of supply: Well at elevated tank; drilled in 1935 by A. E. Fawcett, Jr.; depth, 203 feet (under-reamed and cased to 140 feet); diameter, 12 inches; deepwell turbine pump and 10-horsepower electric motor, pump set at 91 feet; static water level 32 feet below land surface on August 12, 1935; yield, 270 gallons a minute with drawdown of 40 feet on test, present yield, 250 gallons a minute.

Pumpage: Summer, 85,000 gallons a day; winter, 40,000 gallons a day. Storage: Elevated tank, 75,000 gallons; ground storage, 50,000 gallons.

Customers: 270. Treatment: None.

# Analysis [Collected July 1945. pH is 7.6. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million	,	Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	56 27 288	2, 80 2, 22 12, 51 .33 6, 26	Sulfate (SO ₄ ) Chloride (CI) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	95 340 .4 .8 1,020 251	1. 98 9. 59 . 02 . 01 . 01

# Driller's log; well 1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Surface soil	2 28 30 35 10	2 30 60 95 105	Sand	35 12 35 16	140 152 187 203

#### SAN PATRICIO COUNTY

#### ARANSAS PASS

Population in 1940: 4,095.

Source of information: C. H. Cavitt, water superintendent, July 17, 1945.

Ownership: Municipal.

Source of supply: 10 wells at 2 well fields; well field No. 1 at elevated tank near center of city; well field No. 2 in south part of city about 1 mile from well field No. 1; all 7 wells in well field 1 center around the ground storage reservoir and elevated tank; wells 1, 2, 3, and 4 are about 200 feet from the nearest well; wells 5 and 6 are about 300 feet from the nearest well; and well 7 is about 500 feet from the nearest well.

#### Well field 1:

Well 1. Drilled about 1914; depth, 60 feet; diameter, 8 inches; deep-well cylinder and pump jack driven by 3-horsepower electric motor: static water level reported 27 feet below land surface.

- Well 2. Drilled in 1930 by Marvin Baker; depth, 60 feet; diameter, 10 inches; deep-well cylinder and pump jack driven by 3-horsepower electric motor.
- Well 3. Drilled in 1930 by Marvin Baker; depth, 60 feet; diameter, 8 inches; deep-well cylinder and pump jack driven by 3-horsepower electric motor.
- Well 4. Drilled in 1932 by W. R. Erwin; depth, 60 feet; diameter, 12 inches; deep-well turbine pump driven by 2-horsepower electric motor; yield, 50 gallons a minute.
- Well 5. Drilled in 1930 by Marvin Baker; depth, 60 feet; diameter, 10 inches; deep-well cylinder and pump jack driven by 10-horsepower electric motor.
- Well 6. Drilled in 1933 by Marvin Baker; depth, 60 feet; diameter, 8 inches; deep-well turbine pump driven by 2-horsepower electric motor; yield, 50 gallons a minute.
- Well 7. Drilled in 1940 by Marvin Baker; depth, 60 feet; diameter, 8 inches; deep-well turbine pump driven by 5-horsepower electric motor.

Well field No. 2:

- Well 1. Drilled in 1940 by Lloyd Richardson; depth, 60 feet; diameter, 10 inches; deep-well turbine pump driven by 2-horsepower electric motor; static water level, 6 feet below land surface; yield, 50 gallons a minute.
- Well 2. About 500 feet from well 1; drilled in 1940 by Lloyd Richardson; depth, 60 feet; diameter, 10 inches; deep-well turbine pump driven by 2-horsepower electric motor.
- Well 3. About 700 feet from well 2; drilled in 1941 by; Marvin Baker; depth, 60 feet; diameter, 8 inches; deep-well turbine pump driven by 3-horsepower electric motor.

Pumpage (estimated): 200,000 gallons a day.

Storage: Elevated tank, 60,000 gallons; concrete ground reservoir, 84,000 gallons; wood ground tank, 18,000 gallons.

Number of customers: 900.

Treatment: None.

#### Analyses

[Collected July 1945. pH: Wells 1, 2, and 3, in well field 2, 7.8; well 6, in well field 1, 7.4. Analyzed by J. H. Rowley]

	Wells 1, 2 and 3		Well 6	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	53 4.0 56 4.9 199 4.2 78 0	2. 65 . 33 2. 45 . 13 3. 26 . 09 2. 20 . 00	21 .40 65 15 124 8. 7 280 3. 5 192 .2 .2 .593 234	3. 24 1. 23 5. 40 . 22 4. 59 . 07 5. 42 . 01

#### MATHIS

Population in 1940: 1,950.

Source of information: E. T. Gidlett, water superintendent, July 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At water tank; drilled in 1939; depth, 319; deep-well turbine pump; yield, 280 gallons per minute.

Well 2. At water tank one block from well 1; drilled in 1943 by A. H. Masiran; depth, 480 feet; drilled to 617 feet and plugged back to 480; yield, 280 gallons per minute.

Pumpage: No record, automatic control.

Storage: Elevated tank 100,000; ground storage, 50,000 gallons.

Number of customers: 591.

Treatment: None.

# Analyses [Collected July 1945. pH: Well 1, 8.0; well 2, 7.8. Analyzed by J. H. Rowley]

	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ).  Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₂ .	.61 27 8.7 347 9.9 351 43 378 1.0	1. 35 . 72 15. 10 . 25 5. 75 0. 90 10. 66 . 05	14 .22 18 6, 7 358 11 345 33 385 1, 0 2, 2 999 86	0. 90 .55 15. 57 .28 5. 66 .08 .08

#### ODEM

Population in 1940: 1,147.

Source of information: Walter Heinsholm, water superintendent, July 1945.

Ownership: Municipal. Source of supply: 3 wells.

Well 1. At elevated tank; used as stand-by; drilled about 1930; depth, about 125 feet; diameter, 6 inches; deep-well cylinder and pump jack driven by electric motor; yield, 20 gallons a minute.

Well 2. At elevated tank, drilled in 1936 by Layne-Texas Co.; depth, 126 feet; diameter, 10 inches; deep-well turbine pump driven by 7½-horsepower electric motor; pump set at 87 feet; static water level, 60 feet below land surface; yield, 60 gallons a minute.

Well 3. One-half mile north of Odem; drilled in 1940 by Masarin and Vickers; depth, 133 feet; diameter, 8 inches; deep-well turbine pump driven by 5-horsepower electric motor; yield, 20 gallons a minute.

Pumpage: Maximum 60,000 gallons a day; average 40,000 gallons a day. Storage: Elevated tank, 50,000 gallons; ground reservoir, 100,000 gallons.

Number of customers: 211.

Treatment: Aeration, sedimentation, and chlorination.

# Analysis, well 2

[Collected July 1945. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	119 50 829	5. 94 4. 11 36. 03 . 54 8. 37	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	58 1,310 .8 2.8 2,700 530	1. 21 36. 95 . 04 . 05

#### SINTON

Population in 1940: 3,770.

Source of information: J. P. Hall, water superintendent, July 19, 1945.

Ownership: Municipal. Source of supply: 5 wells.

- Well 1. At fire station; drilled about 1912; depth, 936 feet; diameter, 4 inches; flows 50 gallons a minute.
- Well 2. In city park, drilled in 1922; depth, 936 feet; diameter, 6 inches; flows 15 gallons a minute. (Flowed 50 gallons a minute before well 8 was drilled.)
- Well 5. About 300 feet north of city park; drilled in 1939 by Layne-Texas Co.; depth, 473 feet; diameter, 13% to 8% inches; deep-well turbine pump driven by 15-horsepower electric motor; static water level 18 feet below land surface on November 11, 1939; pumping level, 54 feet below land surface when pumped 405 gallons a minute, November 11, 1939.
- Well 6. In city park; drilled in 1937 by E. T. Ellwood; depth, 906 feet; diameter, 6 inches; flowed 100 gallons a minute in 1937 and 60 gallons a minute in 1945.
- Well 8. In city park; drilled in 1941 by Layne-Texas Co.; depth, 940 feet; diameter, 8 inches; flowed 110 gallons a minute when drilled and 100 gallons a minute in 1945.

Pumpage: Summer, 250,000 gallons a day; winter, 200,000 gallons a day.

Storage: Elevated tank, 75,000 gallons; ground reservoir, 116,000 gallons; ground reservoir, 56,000 gallons.

Number of customers: 675.

Treatment: None.

#### Analyses

[Collected July 1945. pH: well 1, 7.7; well 2, 7.9; well 5, 7.5, well 8, 8.0. Analyzed by J. H. Rowley]

	Well 1		Well 2	
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	8.6 2.0 663 16 350 .4 850	0.43 .16 28.82 .41 5.74 .01 23.97 .05	10 .11 .13 .2.5 .804 .14 .374 .4 .1,060 .1.2 .3.2 .2,090 .61	0.65 .21 34.94 .36 6.14 .01 29.90 .06

	Well 5		Well 8	
_	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ )  Iron (Fe).  Calcium (Ca).  Magnesium (Mg).  Sodium (Na).  Potassium (K).  Bicarbonate (HCO ₃ ).  Sulfate (SO ₄ ).  Chloride (Cl).  Fluoride (F).  Nitrate (NO ₃ ).  Dissolved solids.  Total hardness as CaCO ₃ .	5. 5 1. 7 356 5. 4 374 48 312 1. 0	0. 27 . 14 15. 47 . 14 6. 13 1. 00 8. 80 . 05 . 04	8.0 .08 18 3.9 992 16 420 .2 1,340 0 2,590 82	0. 9 33 43. 1: 4 6. 88 . 00 37. 7: . 0

# Drillers' logs

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
		We	भा ५		
Sandy clay Muddy sand Caliche Sand Caliche Rock Shale Rock Caliche Sand Shale break Sand and shale breaks Hard layer Shale break Shale break Sand and shale breaks Hard layer Shale and sand layers. Caliche Blue shale Sand Shale Sand Shale Sand Shale Sand	9 13 9 5 3 3 9 2 5 9 2 11 2 13 28 11 8 3 16 9	9 222 31 36 39 42 51 53 58 67 69 80 82 95 123 134 142 145 161 170 187	Sandy shale Sand Shale Sand Shale Sand Tough shale Sandy shale Sandy shale Shale break Sand Shale and sand breaks Sticky shale Shale, sand breaks Shale Shale Sand Shale Break Sand Shale	13 67 27 8 46 53 2 3 7 5 12 6 14 8 8 8 8 24 10	200 206 233 241 247 342 345 352 357 369 375 405 413 447 449 446
		We	118		
Clay Sand Clay and caliche Sandy shale Caliche Shale Fine sand Tough shale Rock Hard shale Sand Shale Sand Shale Sand Hard sand Hard sand	8 10 30 90 8 95 15 38 1 80 15 15 10	8 18 48 138 146 241 256 294 295 375 390 405 415 433	Rock. Hard shale Sand. Shale. Sand. Shale. Sand. Hard shale Sand. Tough shale. Sand. Shale.	1 7 42 32 21 29 22 125 14 181 33 12	434 441 483 515 536 565 587 712 726 907 940 952

# TAFT

Population in 1940: 2,686.

Source of information: C. R. Brock, operator, July 1945.

Owner: Central Power and Light Co.

Source of supply: 4 wells at company plant.

Well 2. Depth about 220 feet; deep-well turbine pump and electric motor; yield, 285 gallons a minute, February 16, 1942.

Well 6. Depth about 200 feet; deep-well turbine pump and electric motor; yield reported, 300 gallons a minute.

Well 7. Depth about 200 feet; deep-well turbine pump and electric motor; yield reported, 300 gallons a minute.

Well 9. Drilled in 1944 by Layne-Texas Co., Ltd.; depth, 216 feet; diameter, 24 to 16 inches; screens from 158 to 188 feet and 206 to 216 feet; deep-well turbine pump and 30-horsepower electric motor; static water level, 70 feet below land surface on November 7, 1944; pumping level, 156 feet when pumping 260 gallons a minute.

Pumpage: Averages 601,000 gallons a day in January 1945; 763,000 gallons a day in June 1945.

Storage: Elevated tank, 100,000 gallons; ground reservoir, 140,000 gallons.

Number of customers: 776.

Treatment: Aeration and chlorination.

Analyses
[Collected July 1945. pH; Well 7, 7.7; well 9, 7.8. Analyzed by J. H. Rowley]

	w	ell 7	Well 9		
	Parts per million	Equivalents per million	Parts per million	Equivalents per million	
Silica (SiO2) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (NO3) Dissolved solids. Total hardness as CaCO3	21 8.4 531 7.7 394 113 570 1.8	1. 05 .69 23. 10 .20 6. 47 2. 35 16. 08 .09	16 .02 17 7.6 490 8.8 437 66 508 1.8 2.2 1,330 85	0. 85 62 21.30 23 7.17 1.37 14.33 .09	

# Driller's log, well 9

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil	5 10 10 7 47 14	5 15 25 32 79 93 109	Sand Clay Sand (broken) Sand and lime Shale Sand (broken) Shale	7 5 66 6 7 16 5	116 121 187 193 200 216 221

# STARR COUNTY RIO GRANDE CITY

Population in 1940: 2,500.

Source of information: superintendent, Central Power and Light Co., August 9, 1945.

Owner: Central Power and Light Co.

Source of supply: Rio Grande; pumping plant five blocks east and one block south of post office.

Storage: Elevated tank, 50,000 gallons; ground storage, 500,000 gallons.

Number of customers: 617.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, and

chlorination.

## Average pumpage, in gallons a day

	1940	1941	1942	1943	1944	1945
anuary	174,000	222,000	253,000	386,000	155,000	173, 00
February	233, 000	198,000	251,000	343,000	207,000	207, 00
March	290, 000	201,000	364,000	371,000	220,000	205, 0
April	344,000	297, 000	389, 000	393,000	231,000	307, 0
May	385, 000	307,000	415,000	383, 000	217, 000	322, 0
une	343, 000	310,000	342,000	317,000	208,000	333, 0
uly	333, 000	350,000	350,000	318,000	179,000	
August	333, 000	473,000	417,000	345,000		
September	316,000	360,000	393,000	287, 000	186,000	
October	262, 000	318,000	376,000	213, 000	167,000	
November	224, 000	238,000	365,000	161,000	151,000	
December	229, 000	245, 000	378, 000	227, 000	185,000	

# Analyses

# [Collected August 9, 1945. pH of finished water, 7.7 Analyzed by C. B. Cibulka]

	Finished water		Raw	water
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ). Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	18 90 12 128 217 118 .6	4. 29 1. 48 3. 92 31 2. 10 4. 52 3. 33 . 03 . 02	82 19 91 144 191 114 2 654 282	4.09 1.56 3.94 2.36 3.98 3.22

#### ROMA

Population in 1940: 1,414.

Source of information: E. Ramirez, water superintendent, Aug. 9, 1945.

Ownership: Municipal.

Source of supply: Rio Grande; pumping plant, one block east and two blocks south of post office.

### Average pumpage, in gallons a day

	1941	1942	1943	1944	1945
January February March April May June July August September October November December	20, 967 32, 700	25, 580 27, 392 43, 233 43, 400 46, 161 53, 633 45, 700 45, 354 34, 900 36, 967 40, 800 35, 600	25, 322 41, 428 49, 100 55, 300 71, 100 61, 300 61, 800 55, 100 51, 400 37, 200 34, 300 26, 600	37, 400 46, 800 54, 400 73, 400 63, 000 67, 700 78, 000 72, 100 59, 900 63, 900 51, 300 42, 500	46, 700 46, 700 80, 200 74, 900 92, 300 1, 087, 000

Storage: Elevated tank, 60,000 gallons; concrete ground storage reservoir, 15,000 gallons

Number of customers: 298 (also supplies the communities of La Saenz, Esco-

bores, and San Pedro, Mexico).

Treatment: Coagulation, sedimentation, and chlorination.

Analyses
[Collected Aug. 9, 1945. pH of finished water, 7.7. Analyzed by J. H. Rowley]

	Finished water		Raw water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe). Calcium (Ca) Magnesium (Mg). Sodium (Na). Potassium (K). Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl).	83 21 109 11 120 233 143	4. 14 1. 73 4. 74 . 28 1. 97 4. 85 4. 03	82 22 114 114 228 150	4. 09 1. 81 4. 96 1. 87 4. 75 4. 23
Fluoride (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO3.	.2	.04	.8 725 295	.01

#### UVALDE COUNTY

#### SABINAL

Population in 1943: 1,768.

Source of information: Mrs. R. B. C. Ware, city secretary, Nov. 2, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. At elevated tank; drilled in 1923 by Trim & Son; drilled to 2,800 feet and plugged back to 1,476 feet; diameter, 10 to 6 inches; deep-well turbine pump and electric motor; static water level, 230 feet below land surface in 1929; yield, 250 gallons a minute.

Well 2. Drilled in 1923 by Trim & Son; depth, 1,493 feet; diameter, 10 to 8 inches; cased to 930 feet; deep-well turbine pump and 40-horsepower electric motor; static water level, 214 feet below land surface; yield, 335 gallons a minute.

Pumpage: No record.

Storage: Elevated tank, 100,000 gallons.

Number of customers: 450. Treatment: Chlorination.

### Analyses

Collected Nov. 2, 1945. pH: Well 1, 7.6; well 2, 7.1. Analyzed by C. B. Cibulka and J. H. Rowley]

:	Well 1		Well 2	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (Mo ₃ ) Dissolved solids Total hardness as CaCO ₃	2. 8 .16 .58 .72 .148 .21 .45 .608 .82 .1. 4 .0 .1,020 .440	2.89 5.92 6.43 .54 .74 12.66 2.31 .07 .00	14 .12 .88 .29 .17 .9.5 .254 .142 .20 6 .3.0 .470 .338	4. 39 2. 38 . 75 . 24 4. 16 2. 96 . 03 . 05

Drillers' log: No log available; top of Edwards limestone reported by Trim & Son to be 930 feet below the land surface.

#### UVALDE

Population in 1940: 6,679.

Source of information: R. W. Evans, city secretary, Nov. 1, 1945.

Ownership: Municipal. Source of supply: 3 wells.

Well 1. Dug and drilled about 1910; well consists of a large pit dug to about 50 feet in depth and cemented on four sides, then drilled to 375 feet; diameter of drilled well 10 inches; two horizontal centrifugal pumps mounted in the pit and driven by electric motors; yield, 750 gallons a minute each; static water level, 36 feet below land surface.

Well 2. Drilled in 1938 by H. Crawford and John Roberts; depth, 478 feet; diameter, 12½ inches; deep-well turbine pump and 60-horsepower electric motor; static water level, 36 feet below land surface; yield, 1,100 gallons a minute with a drawdown of about 15 feet.

Well 3. Drilled in 1942 by Henry Rosenow; depth 400 feet; diameter, 12½ inches; deep-well turbine pump and 60-horsepower electric motor; yield, 1,100 gallons a minute.

Storage: Elevated tank, 150,000 gallons; standpipe in North Uvalde, 100,000 gallons.

Number of customers: 1,688.

Treatment: None.

# Average pumpage,1 in gallons a day

	1942	1943		1942	1943
January	392, 000	498, 000	July August September October November December	810, 000	1, 430, 000
February	478, 000	722, 000		1, 300, 000	1, 890, 000
March	465, 000	875, 000		738, 000	1, 430, 000
April	872, 000	942, 000		650, 000	458, 000
May	552, 000	1, 070, 000		667, 000	656, 000
June	1, 135, 000	913, 000		516, 000	522, 000

¹ Average in gallons a day for year 1944 is 910,000; that for 1945 is 926,000.

## Analysis, well 3

[Collected November 2, 1945. pH is 7.0. Analyzed by J. H. Rowley and C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts \ per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ )	11 .08 74 9.5 24 7.0 277	3. 69 . 78 1. 06 . 18 4. 54	Sulfate (SO ₄ ). Chloride (CI). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	19 24 4.1 319 224	0.40 .69 .02 .07

## Driller's log, well 2

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Clay and soil	30	30	Limestone Clay Limestone	89	165
Gravel	28	58		95	260
Clay	18	76		218	478

#### VICTORIA COUNTY

#### VICTORIA

Population in 1940: 11,566.

Source of information: F. B. Lowry, city engineer, Apr. 20, 1945.

Ownership: Municipal. Source of supply: 6 wells.

Well 5. About 400 feet northeast of pump station; drilled in 1934 by Southern Engine & Pump Co.; depth, 612 feet; diameter, 12½ to 10 inches; screen from 562 to 606 feet and gun-perforated from 509 to 538 feet; deepwell turbine pump and 10-horsepower electric motor; flows; pump yield reported 402 gallons a minute after 24 hours' pumping in October 1942; temperature, 77° F.

Well 6. About 300 feet northeast of pump station; drilled in 1938; depth, 365 feet; diameter, 16 to 8% inches; screens at 158 to 180, 204 to 222, 258 to 314, and 326 to 346 feet, underreamed and gravel-walled; deepwell turbine pump and electric motor; static water level, 1 foot below land surface; yield, 500 gallons a minute with draw-down at 78 feet after 5 hours' pumping; temperature, 74° F; water turbid and well unused.

Well 7. About 300 feet northwest of pump station; drilled in 1940 by A. E. Fawcett, Jr.; depth, 412 feet; diameter, 16 to 10 inches, screen from 364 to 410 feet; deep-well turbine pump and 40-horsepower electric motor, pump set at 100 feet; flows 50 gallons a minute at ground level; pump yield, 1,000 gallons a minute with draw-down of 90 feet in 1940; yield, 731 gallons a minute after 24 hours' pumping in October, 1942; temperature, 73° F.

Well 8. About 200 feet east of pump station; drilled in 1941 by A. H. Masiran; depth, 414 feet; diameter, 10¾ to 8 inches; screen from 374 to 413 feet; deep-well turbine pump and electric motor; flows; pump yield 525 gallons a minute with draw-down of 62 feet when drilled; yield, 430 gallons a minute after 24 hours' pumping in October 1942; temperature, 75° F.

Well 9. About 200 feet northwest of pump station; drilled in 1941 by Layne-Texas Co., Ltd.; depth, 604 feet; diameter, 13 to 10¾ inches, screens at 475 to 527 and 554 to 600 feet; deep-well turbine pump and 20-horse-power electric motor; pump set at 100 feet; flows; pump yield, 525 gallons a minute with draw-down of 100 feet when drilled; yield, 603 gallons a minute after 24 hours' pumping in October 1942; temperature, 75° F.

Well 10. One block west of city limits on east Pine Street, drilled in 1942 by Layne-Texas Co., Ltd., depth, 1504 feet (plugged back to 1,012 feet); diameter, 16 to 8% inches; screen from 804 to 991 feet, underreamed and gravel-walled; deep-well turbine pump and 125-horsepower electric motor; static water level 21 feet below land surface on September 2, 1942; yield, 1,000 gallons a minute with draw-down of 201 feet after 39 hours' pumping; pumps directly into water mains; temperature, 82½° F.

Pumpage: No record.

Storage: 2 elevated tanks, 500,000 and 300,000 gallons; concrete ground reservoir,

1,000,000 gallons.

Number of customers: 3,305.

Treatment: Aeration.

## Analyses

[Collected Apr. 20, 1945. pH: Well 5, 7.0; well 6, 7.2; wells 7 and 8, 7.4; wells 9 and 10, 7.5. Analyzed by J. H. Rowley]

	We	ell 5	We	ell 6	We	ell 7
	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million	Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	21 4.7 34 11 146 7.9 402 14 80 .4 0 517 130	1. 70 90 6. 36 . 20 6. 59 22 2. 26 . 02 . 00	26 3. 0 36 11 152 6. 4 386 10 102 . 6 0 537	1. 80 . 90 6. 59 . 16 6. 33 . 21 2. 88 . 03 . 00	28 1. 2 37 12 128 5 8 360 3 91 . 06 484 142	1.8 .99 5.5 .11 5.99 .00 2.5'
	We	11 8	We	11 9	We	11 10
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₂ ) Dissolved solids Total hardness as CaCO ₂	26 7.9 36 12 134 3.9 366 3 93 0 497 140	1.80 .99 5.82 .10 6.00 .06 2.62 .03 .00	18 2 3 29 10 150 5 9 359 15 96 0 504 114	1. 45 .82 6. 51 .15 5. 88 8. 31 2. 71 .03 .00	23 .97 .8 6.9 221 .6 6 .348 .37 .168 .6 .6 .6 .656 .74	0. 96 . 57 9. 66 . 17 5. 76 . 77 4. 74 . 06 . 00

## Driller's log

	Thickness	Depth (feet)		Thickness (feet)	Depth (feet)
		We	al 7		
Surface. Sand—lime streaks. Coarse sand. Gravel. Shale and sand Hard sand rock. Shale—lime streaks. Shale and boulders. Gumbo. Shale and boulders. Rock, hard	31 12 42 13 10 6 7 39 5	17 48 60 102 115 125 141 148 187 192 194	Hard lime Sand and boulders Hard lime Sand, loose Shale and lime Hard sand Sand Shale, sticky Hard sand rock Pink gumbo Sand	51 13 7 15 7 17 21	229 231 282 295 302 317 324 341 362 376 412
Soil Clay Sand and gravel Clay and gravel Sand rock Sand and boulders Sand and shale streaks Sand and boulders Shale Sand	18 70 5 2 25 18 24 3 5 11 6	6 24 94 99 101 126 144 168 171 176 187 193 216 231	Shale	4 8 12 4 30 10 24	236 239 268 272 280 292 296 326 336 360 374 411

## WEBB COUNTY

## LAREDO

Population in 1940: 39,274.

Source of information: H. T. Ellsworth, district manager, and E. J. Hood, water

plant superintendent, July 29, 1944. Owner: Central Power & Light Co.

Source of supply: Rio Grande.

Storage: 2 concrete reservoirs, 2,000,000 and 2,200,000 gallons.

Number of customers: 5,700.

Treatment: Aeration, coagulation, sedimentation, rapid sand filtration, pre-

chlorination, and postchlorination.

## Average pumpage, in thousands of gallons a day

1940	1941	1942	1943	1944 (6 months)	
2,600	2, 650	3, 279	4, 208	4, 410	

## Maximum pumpage in thousands of gallons a day

1940	1941	1942	1943	1944 (6 months)	
		5, 407	6, 901	6, 756	

## Analysis of finished water

[Collected July 29, 1944. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SO ₂ )  Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) + Potassium (K) Bicarbonate (HCO ₃ )	16 102 36 207 122	5.09 2.96 9.00 2.00	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	322 293 . 8 2. 8 1,040 402	6.70 8.26 .04 .05

Monthly averages of finished water at Laredo, in parts per million except pH

[Analyses by Central Power and Light Co.]

	, ,	
	1943	**************************************
Нď	1942	\$38.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
	1941	ರು ಪ್ರಪ್ರಹ್ಮ ಪ್ರಪ್ರಹ್ಮ ಪ್ರಪ್ರಹ್ಮ ಪ್ರಪ್ರಹ್ಮ ಪ್ರಪ್ರಹ್ಮ ಪ್ರಪ್ರಹ್ಣ ಪ್ರಪ್ರಹ್ಣ ಪ್ರಪ್ರಹ್ಣ ಪ್ರಪ್ರಹ್ಣ ಪ್ರಪ್ರಹ್ಣ ಪ್ರಪ್ರಹ ಪ್ರಶ್ನಿಸಿ ಪ್ರಸ್ತಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ ಪ್ರಶ್ನಿಸಿ
3Co3	1943	560 600 470 8350 8350 836 838 850 850 850 850
Hardness as CaCoa	1942	675 650 650 650 390 330 310 310 320 350 222 350 424
Hard	1941	460 340 155 140 700 720
(1)	1943	290 280 280 280 280 160 180 200 200 200 200 200 200 200 200 200 2
Ohloride (Cl)	1942	525 550 550 550 330 330 240 115 64 64 220 301
ō	1941	280 245 245 245 245 245 245 245 245 245 245
<b>3</b>	1943	220 220 230 230 230 230 230 230 230 230
Sulfate (SO4)	1942	275 600 600 840 340 270 270 140 190 330 330 330
1S	1941	380 310 240 360 620 640
Mg)	1943	28 28 28 28 28 28 28 28 28 28 28 28 28 2
Magnesium (Mg)	1942	255 255 255 255 255 255 255 255 255 255
Magn	1941	17 11 19 19 40 55
		January February Rebruary Agren Agren May June July September September October November December Average

## WILLACY COUNTY

#### LYFORD

Population in 1940: 891.

Source of information: W. A. Comp, water superintendent, August 8, 1945.

Ownership: Municipal.

Source of supply: Well 0.4 mile north of railroad depot and east of highway; drilled in 1908 by Layne-Texas Co. for irrigation purpose; depth, 1,935 feet; diameter, 10 to 8 inches; screens reported at 1,200 feet and near bottom; rotary pump and 15-horsepower electric motor; small flow 1 foot above land surface after pump has been shut down 10 to 12 hours; temperature, 92° F.

Pumpage (estimated): Maximum, 75,000 gallons; average, 50,000 gallons a day.

Storage: Elevated tank, 60,000 gallons.

Number of customers: 130.

Treatment: None.

# Analysis

[Collected August 8, 1945. Analyzed by C. B. Cibulka]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million			
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg). Sodium and Potassium (Na+K) Bicarbonate (HCO ₂ )		5. 29 2. 30 46. 52 1. 89	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F) Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃ .	1, 580 685 .4 3, 530 380	32. 89 19. 32			

#### RAYMONDVILLE

Population in 1940: 4,050.

Source of information: Bill Schupp, city manager, August 10, 1945.

Ownership: Municipal.

Source of supply: Canal from Rio Grande. Formerly supplied from well drilled in 1928 by Layne-Texas Company; depth, 1,416 feet; cased to 1,360 feet, diameter, 12 to 8½ inches; static water level reported, 10 feet below land surface on June 25, 1928; yield, 325 gallons a minute with drawdown of 31 feet.

Pumpage: Maximum, 900,000 gallons a day.

Storage: Elevated tank, 75,000 gallons; ground reservoir, 250,000 gallons.

Number of customers: 1,260.

Treatment: Coagulation, sedimentation, rapid sand filtration, prechlorination, and postcholorination.

## Analyses

[Collected: Well, March 23, 1987; canal, August 8, 1945. pH: Well, 8.2; canal, 7.8. Well sample analyzed by State Health Department; canal sample analyzed by C. B. Cibulka]

	Well Canal (Finished Water		
	Parts per million	Parts per million	Equivalents per million
Silica (SiO ₂ )	.14	17 . 11	
Iron (Fe) Calcium Magnesium (Mg)	43	78 19	3, 89 1, 56
Sodium (Na) Potassjum (K)		103 9. 9	4. 47 . 25
Bicarbonate (HCO ₃ ) Sulfate (SO ₄ )	1, 167	99 226 135	1. 62 4. 71 3. 81
Chloride (Cl). Fluoride (F). Nitrate (NOs).	2, 25	.6 0	.03
Dissolved solids Total hardness as CaCO ₃	2, 781 284	659 272	

## Driller's log, well

	Thickness (feet)	Depth (feet)		Thickness . (feet)	Depth (feet)
Sand	84 59	84 143	Sand		686 830
Sand		221	Clay and sand		851
Clay	51	272	Sand rock	1	852
Sand	39	311	Clay and gravel		872
Clay	25	336	Sand rock		874
Sand	1 26	362	Clay	42	916
Clay	24	386	Clay and gravel	23	939
Sandy clay	35	421	Packsand		943
Sand	15	436	Clay Packsand	35	978
Clay Sand and clay layers	16 24	452 476			985 1,026
Gumbo	30	506	ClayGumbo		1,020
Sand.		522	Sand		1,055
Clay		530	Clav		1,081
Sand	16	546	Sand		1,096
Sand rock		547	Sand rock		1,097
Clay	36	583	Clay		1, 113
Sand	18	601	Sandy clay		1, 200
Clay	15	616	Packsand		1, 210
Sand	40	656	Clay		1, 304
Clay	22	678	Sandy clay	12	1, 416

#### WILSON COUNTY

#### FLORESVILLE

Population in 1940: 1, 708.

Source of information: Tom Johnson, water superintendent, July 29, 1944.

Ownership: Municipal.

Source of supply: Well 2 blocks west and 2 blocks south of courthouse; drilled in 1925 by San Antonio Public Service Co.; depth, 1,523 feet (reported no water below 850 feet); diameter, 8 inches; flows 375 gallons a minute, temperature, 91° F

Pumpage (flow): Average, 300,000 gallons a day.

Storage: 4 concrete basins, 160,000 gallons, elevated tank, 75,000 gallons.

Number of customers: 525.

Treatment: Aeration, coagulation, hypochlorination, and sedimentation.

# Analysis [Collected July 29, 1944. pH is 7.6. Analyzed by J. H. Rowley]

•	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	15 .05 26 11 100 9.1 354	1. 30 . 90 4. 33 . 23 5. 80	Sulfate (SO ₄ ). Chloride (CI). Flouride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	16 22 2 0 412 110	. 33 . 62 . 01 . 00

#### POTH

Population in 1940: 509.

Source of information: E. J. Koserak, city secretary, July 29, 1944.

Ownership: Municipal.

Source of supply: Well drilled in 1936; depth, 2,032 feet; diameter, 7 to 4½ inches; casing perforated from 1,779 to 2,032 feet; flows 390 gallons a nimute, shut-in pressure 12 pounds when drilled; temperature, 115° F.

Storage: Elevated tank, 50,000 gallons.

Number of customers: 147.

Treatment: None.

## Average pumpage, in gallons a day

	1941	1942	1943	1944
January February March April May June June July August September October November December	18, 000 15, 000 28, 000 15, 500 18, 000 21, 000 43, 000 55, 000 70, 000 33, 000 34, 000 25, 000	29, 000 40, 000 32, 000 49, 000 70, 000 62, 000 72, 000 37, 000 37, 000 40, 000		31, 00 34, 00 31, 00 55, 00 58, 00

## Analysis

## [Collected July 29, 1944. pH is 8.2. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	21 .03 6.0 1.9 215 4.0 495	0.30 .16 9.34 .10 8.13	Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F). Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	32 38 .6 0 567 23	0. 67 1. 07 . 03 . 00

## Driller's log

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Sand, shale, gumbo, and boulders	650 192 788	650 842 1,630	Fine sand and; hale (Carrizo sand)	140 230 32	1,770 2,000 2,032

## SASPAMCO

Population in 1940: 200.

Source of information: Wilson County report, July 29, 1944.

Owner: San Antonio Sewer & Pipe Co.

Source of supply: Well drilled in 1915; depth, 600 feet; diameter, 10 inches; reported water level, 135 feet below land surface; draw-down, 175 feet after

pumping 33 gallons a minute for 24 hours.

Pumpage: Unknown.

Storage: Elevated tank, 10,000 gallons. Number of customers: Unknown.

Treatment: None.

## Analysis

[Collected July 29, 1944. pH is 7.9. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate(HCO ₂ )	12 . 10 42 21 265 331	2. 10 1. 73 11. 52 5. 43	Sulfate (SO ₄ ). Chloride (Cl). Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃ .	290 137 .2 .8 940 192	6.04 3.86 .01 .01

#### STOCKDALE

Population in 1940: 926.

Source of information: John E. Wheeler, water superintendent, July 28, 1944.

Ownership: Municipal.

Source of supply: Well (city well No. 2); drilled in 1935 by Kelly Construction Co.; depth, 315 feet; diameter, 8 to 6 inches; deep-well turbine pump and 10-horsepower electric motor; reported water level, 55 feet below land surface when drilled; draw-down, 50 feet after pumping 124 gallons a minute for 80 hours; yield, 93 gallons a minute in 1940.

Pumpage: Maximum, 100,000 gallons a day. Storage: Elevated tank, 50,000 gallons.

Number of customers: 150.

Treatment: None.

## Analysis

[Collected July 28, 1944. pH is 7.7. Analyzed by J. H. Rowley]

	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ )	21 2. 8 67 26 53 12 240	3. 34 2. 14 2. 30 . 31 3. 93	Sulfate (SO ₄ ). Chloride (CI) Fluoride (F). Nitrate (NO ₃ ). Dissolved solids. Total hardness as CaCO ₃	126 54 .1 .8 483 274	2. 62 1. 52 . 01 . 01

#### ZAPATA COUNTY

#### ZAPATA

Population in 1940: 700.

Source of information: R. San Miguel, Jr., owner, August 9, 1945.

Owner: R. San Miguel, Jr.

Source of supply: Rio Grande pumping plant, two blocks west and two blocks south of courthouse.

Pumpage (estimated): 40,000 to 50,000 gallons a day.

Storage: Elevated wood tank, 5,000 gallons; concrete ground reservoir, about

50,000 gallons.

Number of customers: 125.

Treatment: Coagulation, sedimentation, filtration, and chlorination.

## Analyses

[Collected August 9, 1945. pH of finished water is 7.7. Analyzed by C. B. Cibulka]

	Finished water Raw w		water	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ )  Iron (Fe)  Calcium (Ca)  Magnesium (Mg)  Sodium (Na)  Potassium (K)  Bicarbonate (HCO ₃ )  Sulfate (SO ₄ )  Chloride (Cl)  Fluoride (F)  Nitrate (NO ₃ )  Dissolved solids  Total hardness as CaCO ₃	82 19 104 7. 7 102 231 136	4. 09 1. 56 4. 50 . 20 1. 67 4. 81 3. 84 . 03 . 00	84 21 } 106 132 208 142 1.5 758 296	4. 19 1. 73 4. 60 2. 17 4. 33 4. 00

## ZAVALA COUNTY

## CRYSTAL CITY

Population in 1940: 6,529.

Source of information: L. L. Williams, city manager, May 10, 1945.

Ownership: Municipal. Source of supply: 2 wells.

Well 1. Plugged and abandoned.

Well 2 Drilled in 1927 by Floyd Trimm; depth, 1,050 feet; diameter, 12 inches; deep-well submersible pump and 50-horsepower electric motor; yield, 800 gallons a minute; temperature, 88° F.

Well 3. At pump station; drilled in 1941; depth, 990 feet; diameter, 12½ to 8 inches; liner perforated between 755 and 990 feet; deep-well turbine pump and electric motor; static water level reported 80 feet below land surface when drilled; yield, 800 gallons a minute with draw-down of 14 feet; temperature, 88° F.

Pumpage: Maximum, 1,000,000 gallons; minimum, 500,000 gallons, average

750,000 gallons a day.

Storage: Elevated tank, 50,000 gallons; concrete ground reservoir, 50,000 gallons.

Number of customers: 1,208.

Treatment: Occasional chlorination.

## Analyses

[Collected January 9, 1945. pH of well 2 is 7.5. Analyzed by State Health Department]

	Well 2		Well 3	
	Parts per million	Equivalents per million	Parts per million	Equivalents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃ ) Sulfate (SO ₄ ) Chloride (Cl) Fluoride (F) Nitrate (NO ₃ ) Dissolved solids Total hardness as CaCO ₃	8 64 19 61 296 64 43 2 4	3.19 1.56 2.66 4.85 1.33 1.21 .01	20 .45 64 19 60 293 64 43 .2 430 238	3. 19 1. 56 2. 61 4. 80 1. 33 1. 21 . 01

## Driller's log, well 3

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Soil. Yellow sand. Blue gumbo. Brown shale. Blue shale. Brown shale. Sand-water Brown shale. Sand-water Brown shale. Sand-water Brown shale. Sand-shale. Sand-shale. Sand-shale.	25 10 65 65 10 35 25 15	4 80 105 115 180 245 255 290 315 330 340 430 450	Brown shale Blue shale Sand Blue shale Light shale Brown shale Light shale Sand Gumbo Sand Gumbo Sand	20 110	500 545 555 600 620 730 755 770 785 895 905

## LA PRYOR

Population in 1940: 500.

Source of information: R. K. Miller, owner, May 9, 1945.

Owner: R. K. Miller.

Source of supply: Well purchased from Central Power & Light Co.; drilled in 1927; depth, 520 feet; diameter, 10 to 6% inches; perforated casing from 460 to 520 feet; deep-well turbine pump and 7½-horsepower electric motor; static water level, 129.3 feet below land surface on Jan. 28, 1930, and reported 130 feet on May 9, 1945; yield, 50 gallons a minute; temperature, 78° F.

Pumpage (estimated): Average, 30,000 gallons a day.

Storage: Elevated tank, 22,000 gallons.

Number of customers: 124.

Treatment: None.

## Analysis

## [Collected May 9, 1945. pH is 7.1. Analyzed by J. H. Rowley]

٠	Parts per million	Equiva- lents per million		Parts per million	Equiva- lents per million
Silica (SiO ₂ ) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂ )	18 .03 .85 14 } 3.0 283	4, 24 1, 15 , 13 4, 64	Sulfate (8O ₁ ) Chloride (C1) Fluoride (F). Nitrate (NO ₃ ) Dissolved solids. Total hardness as CaCO ₃	21 15 . 4 . 2 303 270	0.44 .42 .02 .00

# INDEX

	Page		Page
Agua Dulce	87	Fowlerton	_ 84
Alamo	62	Freer	
Alamo Heights			
Alice	72-74	Geologic structure	_ 4
Aransas Pass	93-94	George West	. 84
Aquifers in the area	4	Gillett	
Asherton	46-47	Goliad	_ 50
Austin chalk	7	Goliad sand	4, 7, 8
Austwell	91	Gonzales	. 57
		Ground water, chemical character of	. 18
Balcones fault zone, relation to ground-water		occurrence of	. 4-8
occurrence	4		
Bandera	21	Harlingen	38-39
Beaumont clay, sands of	4, 8	Hebronville	70-72
Beeville	21-23	Hondo	86-87
Benavides	50		
Big Wells	47	Jourdanton	. 18–19
Bishop	88		
Boerne	79	Karnes City	. 76-77
Brackettville	80	Kenedy	77-78
Brownsville	37	Kingsville	80-82
Brundage	48	Kyle	. 60
Buda	59-60		
		La Feria	. 39
Campbellton	17	La Pryor	. 112
Carrizo sand 4,	5, 6, 7	Laredo1	04-106
Carrizo Springs	48-49	Lissie formation	,
Catahoula tuff	7	Lockhart	31-32
Catarina	49	Los Fresnos	
Christine	17-18	Luling	
Combes	38	Lyford	
Corpus Christi	88-89	Lytton Springs	33
Cotulla	82-83		
Coughran	18	McAllen	65–66
Crystal City11	1-112	McMahan	35
Cuero	42-45	Marion	
		Martindale	
Dale	30	Mathis	
Devine	86	Maxwell	
Dilley		Mercedes	
Donna	62–63	Mineral constituents in solution	
		Mission	67
Eagle Pass	85	Mount Selman formation	4, 6, 7
Ed Couch	63		
Edinburg		New Braunfels	
Edwards limestone	, .	Nixon	57
Elsa	64-65	Nordheim	45
		North Pleasanton	19-20
Falfurrias		0.1	
Falls City		Oakville sandstone	4, 8
Fentress	31	Odem	
Floresville	108	Orange Grove	74

## INDEX

	Page		Page
Pearsall	<b> 54–5</b> 5	Seadrift	37
Pettus	23-24	Seguin	59
Pharr	67-68	Sinton	96-97
Pleasanton	20	Stockdale	110
Port Aransas	90	Surface water, chemical character of	13-15
Port Isabel	40		
Port Lavaca		Taft	97-98
Poteet	20-21	Three Rivers	85
Poth	108-109	Trinity group	5
Premont	75		
		Uhland	35-36
Raymondville	107-108	Uvalde	101-102
Refugio	92		
Rio Grande City	98-99	Victoria	102-104
Rio Hondo	40-41	,	
Robstown	90-91	Waelder	- 58
Rockport	16-17		
Roma	99-100	Water quality, standards of	
Runge	78-79		
_		Water-bearing formations	
Sabinal	100-101	Weslaco	00
San Antonio	25-28	Woodsboro	93
San Benito	41		
San Diego	52-53	Yegua formation	
San Juan	68-69	Yorktown	46
San Marcos	61		
Pagnamaa	100 110	Zanata	110_111

